R&D Day Featuring Plinabulin & SEED Therapeutics

Trevor Feinstein MD Piedmont Cancer Institute

Alberto Chiappori MD Moffitt Cancer Center

Steven Lin MD, PhD MD Anderson Cancer Center

Disclaimer

This presentation has been prepared for informational purposes only. No money or other consideration is being solicited, and if sent in response, will not be accepted. This presentation shall not constitute an offer to sell, or the solicitation of an offer to buy, any securities, nor shall there be any sale of these securities in any state or jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction. The Company is not under any obligation to make an offering. It may choose to make an offering to some, but not all, of the people who indicate an interest in investing. The information included in any registration statement will be more complete than the information the Company is providing now, and could differ in important ways.

This presentation and any accompanying oral commentary contain forward-looking statements about BeyondSpring Inc. ("BeyondSpring" or the "Company"). Forward-looking statements are based on our management's beliefs and assumptions and on information currently available to our management, including those described in the forward-looking statements and risk factors sections of the Company's 20-F filed on April 29, 2024 and other filings with the United States Securities and Exchange Commission (SEC).

Such statements are subject to known and unknown risks, uncertainties, and other factors that may cause our or our industry's actual results, levels of activity, performance, or achievements to be materially different from those anticipated by such statements. In some cases, you can identify forward-looking statements by terminology such as "may," "will," "should," "expects," "plans," "anticipates," "believes," "estimates," "predicts," "potential," "intends," or "continue," or the negative of these terms or other comparable terminology. Forward-looking statements contained in this presentation include, but are not limited to, (i) statements regarding the timing of anticipated clinical trials for our product candidates and our research and development programs; (ii) the timing of receipt of clinical data for our product candidates; (iii) our expectations regarding the potential safety, efficacy, or clinical utility of our product candidates; (iv) the size of patient populations targeted by our product candidates and market adoption of our product candidates by physicians and patients; and (v) the timing or likelihood of regulatory filings and approvals.

Except as required by law, we assume no obligation to update these forward-looking statements publicly, or to update the reasons why actual results could differ materially from those anticipated in the forward-looking statements, even if new information becomes available in the future.

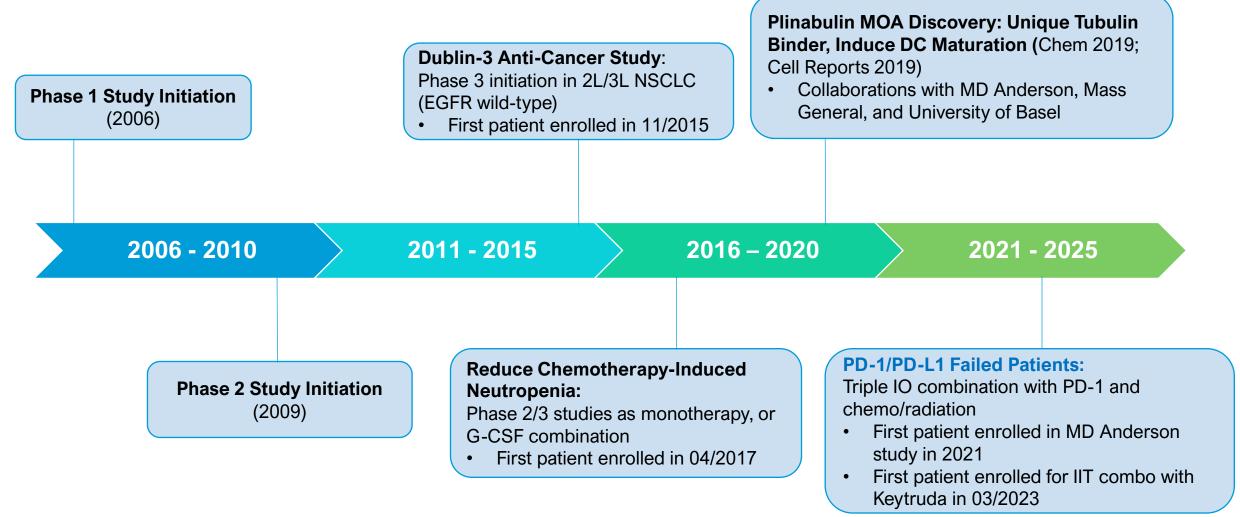
The market data and certain other statistical information used throughout this presentation are based on independent industry publications, governmental publications, reports by market research firms or other independent sources. Some data are also based on our good faith estimates. Although we believe these third-party sources are reliable, we have not independently verified the information attributed to these third-party sources and cannot guarantee its accuracy and completeness. Similarly, our estimates have not been verified by any independent source.

By attending this presentation, you acknowledge that you will be solely responsible for your own assessment of the market and our market position and that you will conduct your own analysis and be solely responsible for forming your own view of the potential future performance of our business.

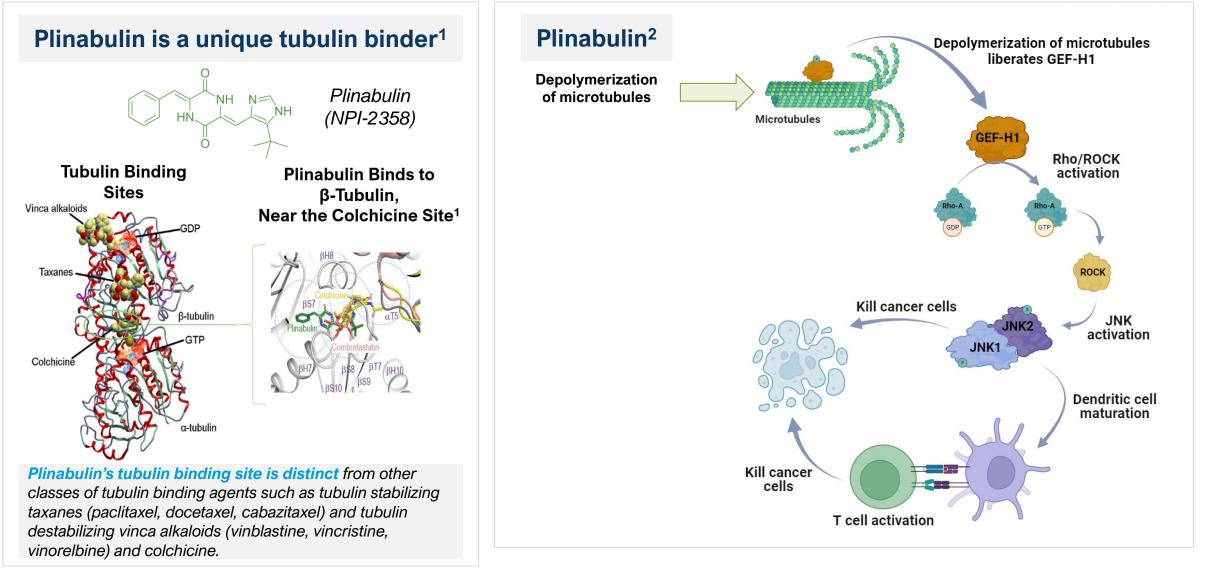
Agenda

Time (EST)	Topics	Speaker/Modulator	Affiliation
10:00 - 10:05	Introduction	Operator	<u>ViaVid</u>
		Shirley Liang	Finance/IR, BeyondSpring
10:05 – 10:15	Opening Remarks	Lan Huang, PhD	CEO, BeyondSpring
10:15 – 10:30	DUBLIN-3 NSCLC Phase 3 Study	Trevor Feinstein, MD	Piedmont Cancer Institute
10:30 - 10:35	Q&A		
10:35 – 10:55	Phase 1 Update on Plinabulin, Radiation and α PD-1 Triple Combo in ICI-resistant Cancers	Steven Lin, MD/PhD	MD Anderson Cancer Center
10:55 - 11:00	Q&A		
11:00 – 11:10	Unmet Need in 1L ES-SCLC	Alberto Chiappori, MD	Moffitt Cancer Center
11:10 – 11:15	Q&A		CSO/CEO, BeyondSpring
11:15 – 11:45	SEED Therapeutics	James Tonra, PhD / Lan Huang, PhD	SEED Therapeutics
11:45 – 11:50	Q&A		CSO/CEO, SEED Therapeutics
11:50 – 12:00	Closing Remarks	Lan Huang, PhD	CEO, BeyondSpring

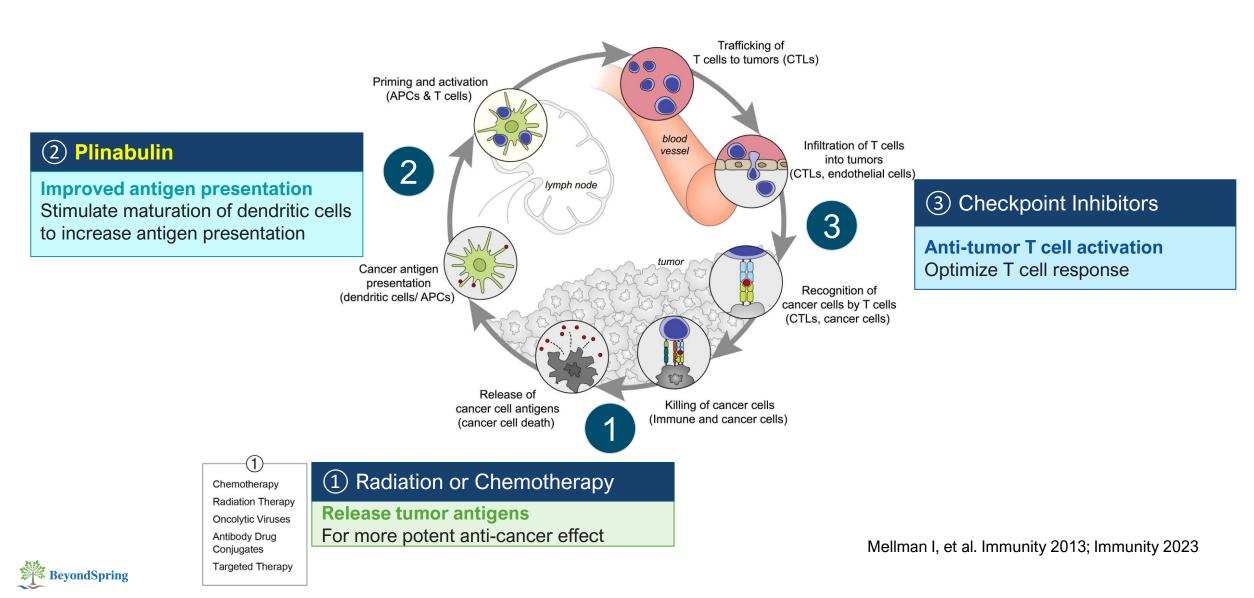
Plinabulin Introduction


Lan Huang, PhD BeyondSpring Pharmaceuticals, Inc.

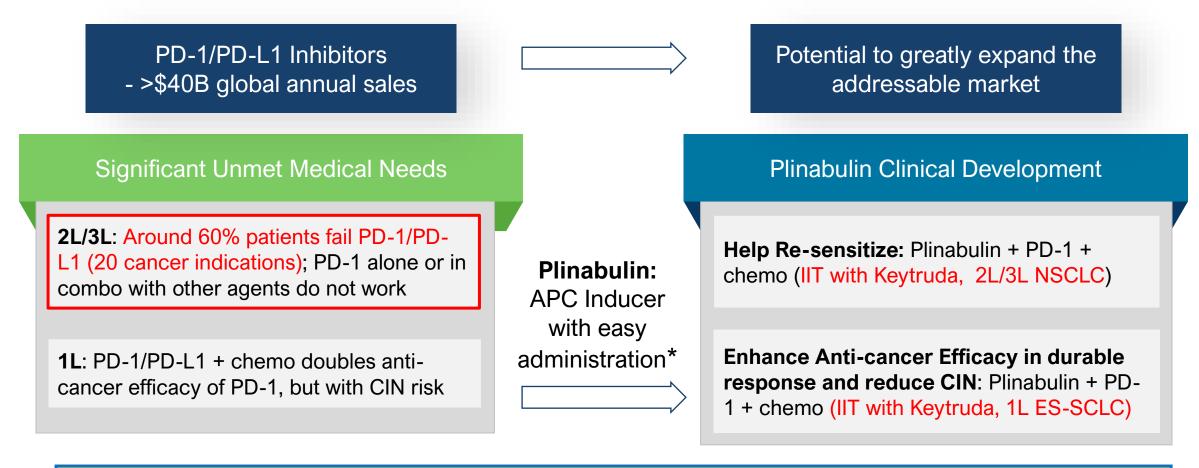
First-in-class Lead Asset - Plinabulin


		Favorable Safety Profile	> 700 Cancer Patients Treated with Good Tolerability
	$\overline{\heartsuit}$	Anti-cancer Efficacy	Positive Phase 3 study in 2L/3L NSCLC with Overall Survival Benefit: 1. durable anti-cancer benefit in doubling 2-year, 3-year OS rate 2. enables more chemo doses by reducing chemotherapy-associated TRAE
		Target IO Failure	Promising efficacy data in triple IO combo (Plinabulin + PD-1/PD-L1 + radiation/chemotherapy) in patients with various cancers after IO-failure
		Ease of Use	Intravenous (IV) Infusion: 1 or 2 dose per cycle
		Intellectual Property	Strong Global Patent Protection: 170 granted/allowed patent to 2038 in 48 jurisdictions
		Regulatory Strategy	Multiple Phase 1/2 studies reading out in 2024 that will inform potentially pivotal randomized clinical studies beginning in 2025
BeyondS	pring		

Plinabulin Development History (>700 Cancer Patients Treated)


Plinabulin Drives DC Maturation and Targeted T-Cell Activation by Effectively Liberating GEF-H1 from Microtubules

BeyondSpring


¹ La Sala et al., Chem 5(11): 2969-2986 (2019) ² Kashyap et al., Cell Reports 28(13): 3367-3380 (2019) GEF-H1 is a Rho guanine nucleotide exchange factor.

Plinabulin Enhances the Cancer Immunity Cycle When Used with Anti-PD-1/PD-L1 and Following Radiation or Chemotherapy

8

Plinabulin as a Potential Combination Therapy with Current I/O Regimens to Address Significant Unmet Medical Needs

- Acquired resistance to PD-1/PD-L1 in NSCLC is due to Antigen presentation pathway mutation or T cell exhaustion (Memon et al. Cancer Cell 42: 209-224 (2024)), which is the gap Plinabulin MOA potentially can help.
- Overtime, Plinabulin may have the potential to move into earlier lines of treatment in combination with I/O.

Plinabulin Clinical Development

	Indication/Target	Program	Preclinical	Phase 1	Phase 2	Phase 3	Trial Name / Collaborator	
stage	NSCLC (2 nd /3 rd line)	Plinabulin + Docetaxel					DUBLIN-3	\bigotimes
Late s	CIN Prevention	Plinabulin alone or + Pegfilgrastim					PROTECTIVE-1 & PROTECTIVE-2	\bigotimes
d Trials	NSCLC (2nd/3rd line PD-1 failed)	Plinabulin + Pembrolizumab + Docetaxel					Study 303	Expect Preliminary Data 2H 2024
ator-Initiated	Extensive-Stage SCLC (1 st line)	Plinabulin + Pembrolizumab + Etoposide / Platinum					Study 302	Expect Preliminary Data 1H 2025
Investigato	Multiple cancers (PD-1/PD-L1 failed)	Plinabulin + PD-1/PD-L1 + Radiation					THE UNIVERSITY OF TEXAS MDAnderson Cancer Center	\bigotimes

Significant Unmet Medical Needs in Immune Checkpoint Inhibitor Failed Patients

> Limited Options Currently Exist for Patients Who Failed PD-1/PD-L1 Inhibitors

Melanoma: Amtagvi[™](lifileucel): Approved TIL cell therapy patients by lovance Therapeutics

- > \$500 K USD per dose
- Estimated annual global sales to be greater than \$1 billion by 2030

Plinabulin improves overall survival and enhances safety in 2L/3L NSCLC (Dublin-3 Study)

Trevor Feinstein, MD Piedmont Cancer Institute

Leading Expert Speaker Biography

Dr. Trevor Feinstein is the recipient of numerous honors and awards, including the Thomas O'Toole Award for his outstanding work with the underserved populations; a Sanofi-Aventis Grant; and the Amgen Fellowship Award. Dr. Feinstein has authored over 50 peer-reviewed articles, abstracts and manuscripts in Hematology and Oncology. He has given international lectures on the treatment of lung cancer, including a proffered paper at ESMO (European Society for Medical Oncology) and leading the AstraZeneca Lung Cancer Summit in Beijing.

Dr. Trevor Feinstein Piedmont Cancer Institute

Dr. Feinstein co-runs Piedmont Cancer's research department. He sits on the Piedmont Hospital's Oncology Scientific Review Committee and is director of research at Piedmont Fayette Hospital. He is a member of Georgia CORE's research committee along with Georgia Society for Clinical Oncology Clinical Practice Committee. He also chairs the Lung Disease Group for the entire OneOncology network.

The EGFR-wild Type 2L/3L NSCLC Have Been a Historically Difficult Space in Which to Develop

Treatment options in 2L/3L NSCLC are limited

Docetaxel-based therapies are the mainstay therapy in 2L/3L NSCLC (EGFR wt).

However, docetaxel-based therapies (SOC) demonstrate limited efficacy and are associated with >40% severe (grade 3/4) neutropenia.

Other approved agents:

- Ramuciramab + Docetaxel vs. Docetaxel: OS HR=0.86, severe neutropenia 49% vs. 40%;
- Pemtrexed vs. Docetaxel: OS HR=0.99, severe neutropenia 5% vs. 40%.

Additionally, with immunotherapies moving to first line NSCLC, there is a growing population of 2L/3L patients that are refractory to immunotherapy.

Attempts to address treatment needs have been challenging

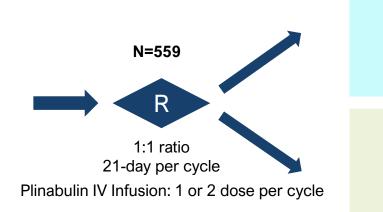
Since Nivolumab's approval 8 years ago, no new agent with a novel mechanism has been approved in this indication.

Multiple Phase 3 studies (PD-1/PD-L1 failed patients, 2L/3L NSCLC), did not meet OS endpoint vs. docetaxel:

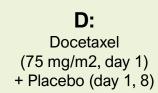
- 1. SAPPHIRE: BMS' Nivolumab (PD-1 antibody) + Mirati's Sitravatinib (TKI)
- 2. CONTACT-01: Roche's Atezolizumab (PD-L1 antibody) + Exelixis's Cabozantinib (TKI)
- 3. LEAP-008: Merck's Pembrolizumab (PD-L1 antibody) + Eisai's Lenvima (TKI)
- 4. CANOPY-2: Novartis' Canakinumab (IL-1b antibody) + docetaxel
- 5. EVOKE-01: Gilead's sacituzumab govitecan-hziy (ADC antibody drug conjugate)
- 6. CARMEN-LC03: Sanofi's tusamitamab ravtansine (ADC)

Recent successful phase 3 studies with mixed results:

- Lunar (TTfields vs. docetaxel): OS benefit (HR=0.74), but no PFS and ORR benefit;
- TROPION-Lung01 (Datopotamab deruxtecan ADC vs. docetaxel): OS benefit (HR=0.90) in ITT population, with better OS (HR=0.75) in non-squamous NSCLC.


Plinabulin Has Been Evaluated in Combination with Docetaxel in a Phase 3 Study with 2L/3L advanced and Metastatic NSCLC Patients

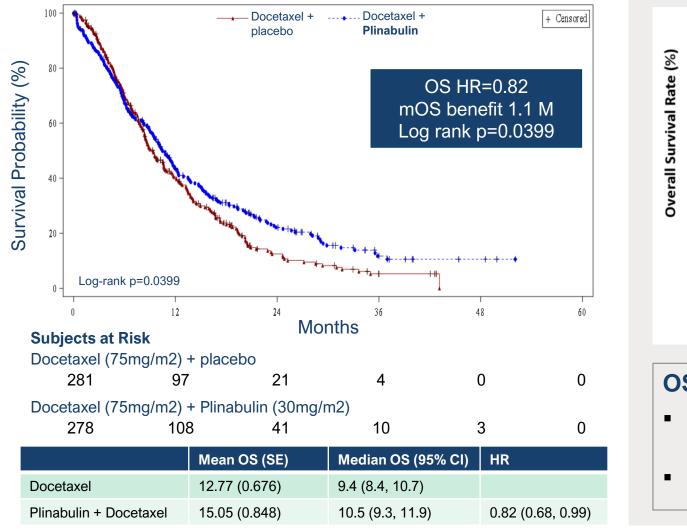
Docetaxel + Plinabulin vs. Docetaxel + Placebo in Patients with EGFR Wild-Type NSCLC

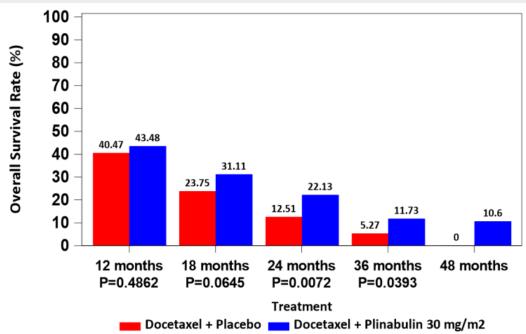

Study Plan	Primary endpoint	Secondary endpoints		
 Global, randomized, single-blinded (patients only) Stratified by region (Asia/non-Asia), prior line (2L or 3L), ECOG (0-1/2), Prior PD-1/PD-L1 (yes/no) 	Overall survival (OS)	 ORR, PFS Percent of patients without severe neutropenia (Day 8, cycle 1) Month 24 and 36 OS rate DoR Q-TWiST; QoL Proportion of patients who received docetaxel >8 cycles, >10 cycles and >12 cycles 		

Inclusion Criteria:

- Non-squamous or squamous NSCLC
- Stage IIIb/IV
- ECOG ≤ 2
- Progression during or after treatment with one or two treatment regimens containing a platinum
- Must have at least one measurable lung lesion
- Prior checkpoint inhibitor therapy allowed¹

DP: Docetaxel (75 mg/m2, day 1) + **Plinabulin** (30 mg/m2, day 1, 8)



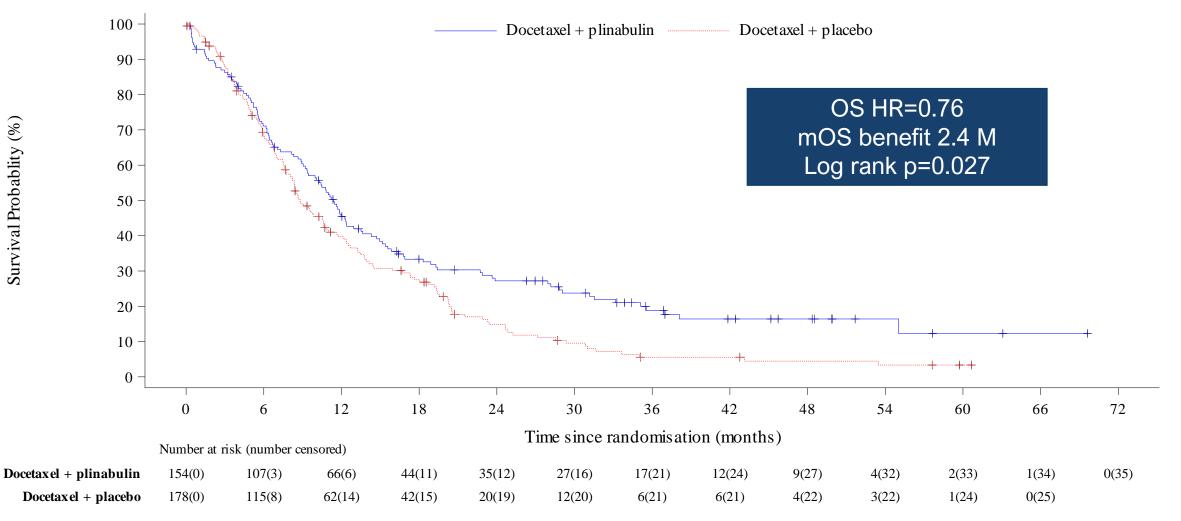

Baseline and Disease Characteristics

	Docetaxel + Placebo n=281	Docetaxel + Plinabulin n=278		Docetaxel + Placebo n=281	Docetaxel + Plinabulin n=278
Median age, y (range)	60 (25, 85)	61 (37, 82)	Median age, y (range)	60 (25, 85)	61 (37, 82)
Sex, n (%)			Cancer Stage, n (%)		
Male	207 (73.7)	199 (71.6)	IIIB	41 (14.6)	50 (18.0)
Female	74 (26.3)	79 (28.4)	IV	236 (84-0)	224 (80.6)
Tumor histology, n (%)			Prior PD-1/PD-L1 therapy receiv	ved, n (%)	
Non-squamous	178 (63-3)	154 (55-4)	Yes	57 (20.3)	49 (17.6)
Squamous	100 (35.6)	120 (43.2)	No	224 (79-7)	229 (82-4)
Missing	3 (1-1)	4 (1.4)	Lines of prior therapy, n (%)		
ECOG, n (%)			First-line	212 (75-4)	204 (73-4)
0	44 (15.7)	40 (14·4)	Second-line	69 (24.6)	74 (26.6)
1	225 (80.1)	229 (82-4)	Previous radiotherapy, n (%)		
2	11 (3-9)	9 (3-2)	Yes	84 (29.9)	87 (31.3)
Missing	1 (0-4)	0 (0.0)	No	197 (70.1)	191 (68-7)
Regional distribution, n (%)			Previous surgery, n (%)		
Asian	245 (87-2)	243 (87.4)	Yes	138 (49.1)	123 (44-2)
Western	36 (12.8)	35 (12.6)	No	143 (50.9)	155 (55-8)

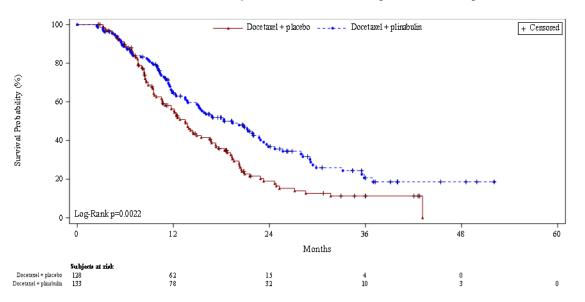
Plinabulin + Docetaxel Met its Primary Endpoint (OS) and Showed Significant Improvement in Long-term OS Rate

OS Rate Increase Results

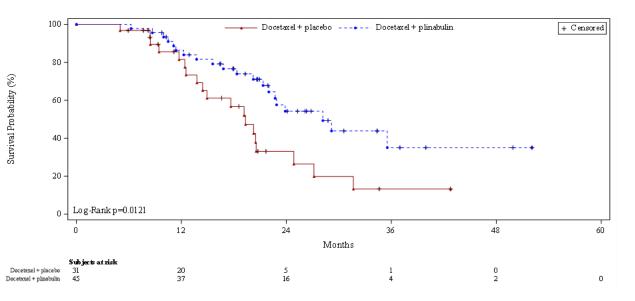
- Significantly increased OS rate in 24 months, and
 36 months (doubling benefit)
- 48m OS rate: D + Product X (10.6%) vs D (0%)


BeyondSpring

HR<1: Better Efficacy in DP Arm 95% CI of Hazard Ratio Subgroup **No.of Patients Hazard Ratio** D DP HR High Low 281 278 0.822 0.681 0.991 Overall Age 18-64 0.83 $0.658 \\ 0.569$ 1.048 188 178 0.786 1.086 100 >=65 93 Gender $0.84 \\ 0.82$ $\underset{1.022}{\overset{1.2}{}}$ $0.588 \\ 0.658$ Female 74 79 Male 207 199 Race $0.82 \\ 0.82$ $0.672 \\ 0.462$ $1.002 \\ 1.456$ 248 244 Asian 31 32 Non-Asian **ECOG** group $\begin{array}{c} 0.822\\ 0.916\end{array}$ $0.679 \\ 0.335$ $0.995 \\ 2.507$ 270 269 0-1 2 11 9 PD-1/PD-L1 Therapy Received $1.068 \\ 1.025$ 214 216 0.865 No -0.7Yes 0.682 0.454 67 62 **Current Treatment** 212 204 0.78 $\begin{array}{c} 0.626\\ 0.648\end{array}$ $0.972 \\ 1.343$ Second Line 74 0.933 69 Third Line Region $\substack{0.812\\0.84}$ $0.993 \\ 1.437$ $0.665 \\ 0.491$ China 245 243 35 RoW 36 **Tumor Histology** $0.596 \\ 0.685$ 0.97 1.26 Non-Squamous 178 154 0.76 0.929 Squamous 100 120 Tumor Stage 50 $0.664 \\ 0.865$ $0.407 \\ 0.704$ $1.085 \\ 1.062$ IIIB 41 IV 236 224 < Plinabulin Better Placebo Better > 0.0 0.5 1.0 1.5 2.02.5

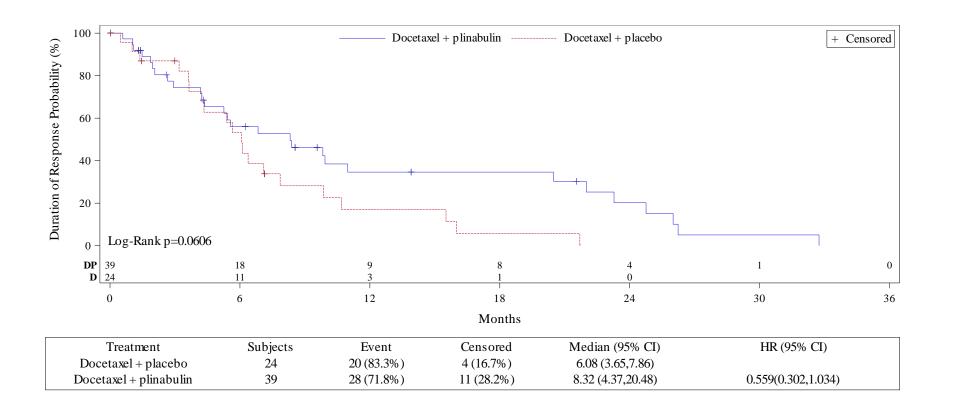

Subset Analysis: Significant Survival Benefit in Non-squamous NSCLC

Survival Probablity (%)

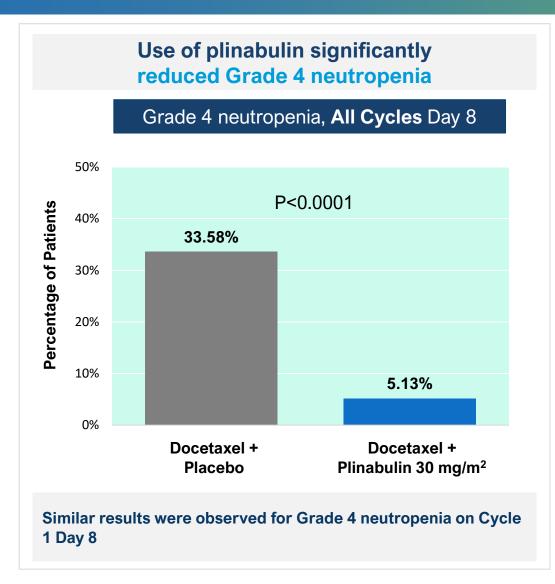

Improved OS Benefit in Patients with More Cycles of Treatment

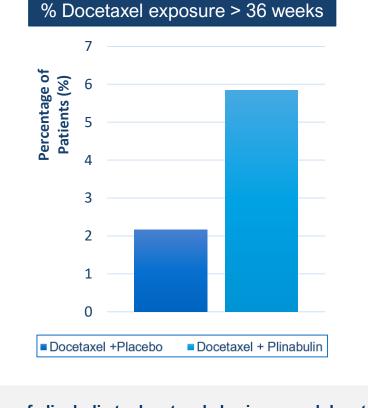
OS K-M Graph for treatment cycles >= 4 cycles

	Median OS	p value
D (n= 128)	13.5(10.68,16.54)	
DP (n= 133)	18.3(14.96,22.88)	HR=0.634; P = 0.0022

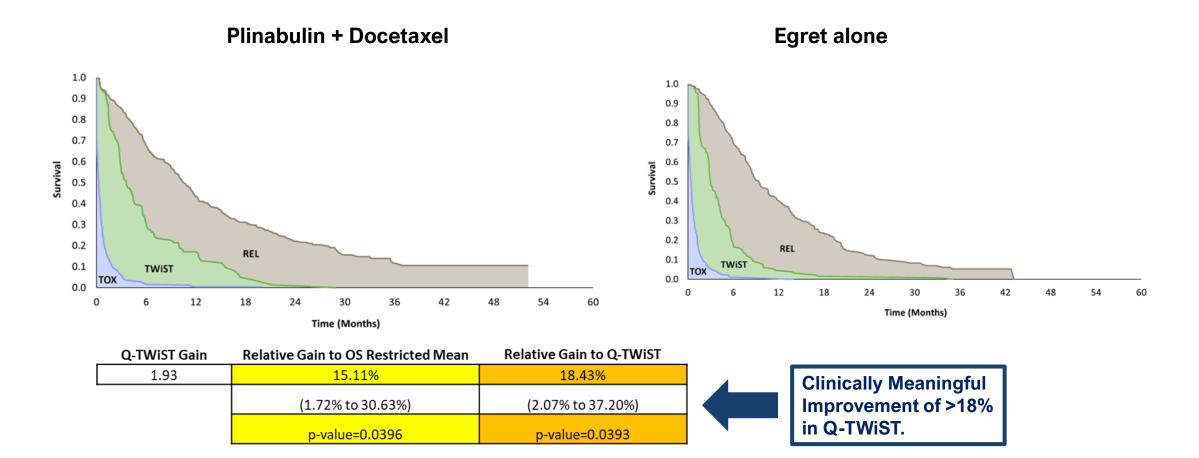

OS K-M Graph for treatment cycles >= 8 cycles

	Median OS	p value
D (n= 31)	19.3(13.77,24.85)	
DP (n= 45)	28.2(21.99,NA)	HR=0.453; P = 0.0121


Improved Duration of Response (DOR*) Durable Anti-cancer Benefit


DOR	Docetaxel (75 mg/m2) N=24	Plinabulin (30 mg/m2) + Docetaxel (75 mg/m2) N=39	
Median Months (95% CI)	6.08 (3.65, 7.86)	8.32 (4.37, 20.48), p=0.06	

Plinabulin Not Only Slows Progressive disease, but Also Increased the Tolerability of Docetaxel and Increased Duration of Treatment



...allowing more patients to remain on docetaxel for a longer duration

Addition of plinabulin to docetaxel also increased docetaxel exposure by mean dose (mg)

Significant Improvement in Quality-of-Life Benefit in DP vs. D Q-TWiST (Quality-Adjusted Time Without Symptoms of Disease and Toxicity)

Q-TWiST benefit in DP vs D (18.4%) is comparable to that of Keytruda vs. D (20%) in Keynote-010 study¹.

DUBLIN-3: Treatment Related Adverse Events

	Docetaxel + Placebo N=278 n (%)			Docetaxel + Plinabulin N=274 n (%)			
TEAE	All grades	Grade 3	Grade 4	All grades	Grade 3	Grade 4	
➡ Any	276 (99·3)	85 (30·6)	119 (42·8)	273 (99·6)	141 (51·5)	52 (19·0)	
Haematological							
Anemia	121 (43·5)	13 (4·7)	0	137 (50·0)	15 (5·5)	0	
WBC decreased	189 (68·0)	102 (36·7)	33 (11·9)	160 (58·4)	47 (17·2)	32 (11·7)	
Neutrophil count decreased	196 (70·5)	46 (16·5)	107 (38·5)	142 (51·8)	48 (17·5)	39 (14·2)	
Platelet count decreased	48 (17·3)	2 (0.7)	1 (0·4)	77 (28·1)	12 (4·4)	6 (2·2)	
Other TEAEs							
Diarrhoea	62 (22·3)	3 (1·1)	0	118 (43·1)	23 (8·4)	1 (0·4)	
Constipation	80 (28.8)	1 (0·4)	0	95 (34·7)	1 (0·4)	0	
Nausea	67 (24·1)	0	0	100 (36·5)	3 (1·1)	0	
Vomiting	39 (14·0)	1 (0·4)	0	82 (29·9)	6 (2·2)	0	
Abdominal pain	23 (8·3)	1 (0·4)	0	42 (15·3)	0	0	
Abdominal distension	13 (4.7)	0	0	29 (10·6)	2 (0.7)	0	
Lung infection	42 (15·1)	23 (8·3)	1 (0·4)	31 (11·3)	15 (5·5)	2 (0.7)	
Blood pressure increased	16 (5·8)	8 (2·9)	0	93 (33·9)	50 (18·2)	0	
Hepatic enzyme increased	45 (16·2)	1 (0·4)	0	47 (17·2)	2 (0·7)	0	
Weight decreased	24 (8.6)	0	0	32 (11·7)	1 (0·4)	0	
Cough	77 (27·7)	2 (0.7)	0	64 (23·4)	1 (0·4)	0	
Dyspnoea	47 (16·9)	6 (2·2)	6 (2·2)	38 (13·9)	5 (1·8)	1 (0·4)	
Haemoptysis	27 (9.7)	1 (0·4)	0	31 (11·3)	4 (1·5)	1 (0·4)	

Plinabulin Successfully Improved Efficacy of SOC in 2L/3L NSCLC (EGFR WT), Proving its Clinical Utility

The addition of plinabulin as a single agent added to 2L/3L NSCLC standard-ofcare led to improved overall survival and <u>enhanced</u> safety

Efficacy

- Significant survival benefit in ITT (OS HR=0.82)
- Even more pronounced survival benefit in 2L (HR=0.78), or nonsquamous NSCLC (HR=0.76)

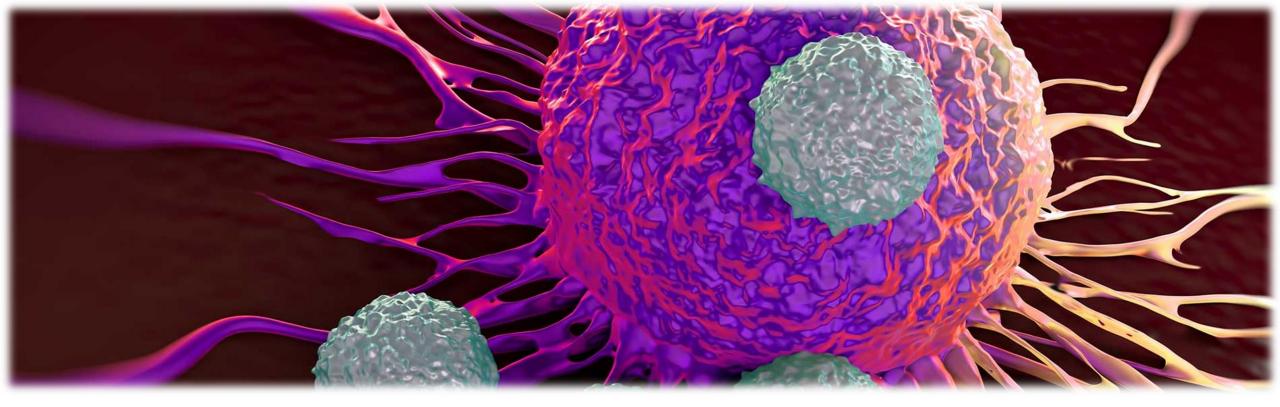
Safety and tolerability

- The regimen is generally <u>well tolerated</u>
- Side effects include transient hypertension that resolves in 4-6 hours, nausea, vomiting and GI side effects, which can be managed with prophylactic anti-emetic therapy
- Significant <u>QoL benefit</u>
- Docetaxel-induced <u>neutropenia was **significantly**</u> <u>reduced</u>, allowing increased treatment exposure

Preclinical and Clinical POC immunomodulating activity of Plinabulin inducing Dendritic Cell maturation and Re-sensitization in Immunotherapy Refractory Tumors when Combined with Radiation and PD-1/PD-L1 Inhibitors

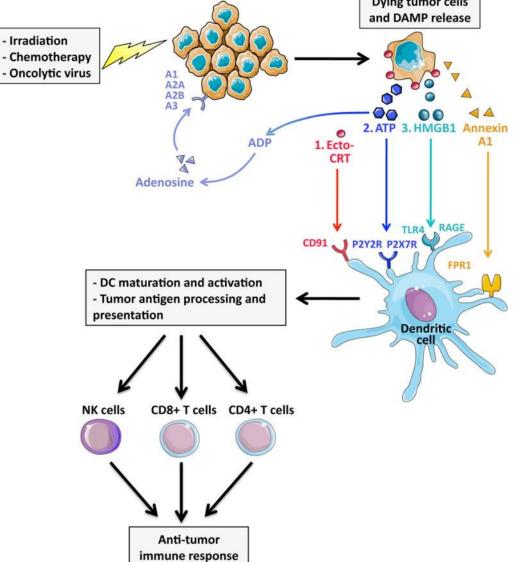
Steven Lin, MD, PhD

MD Anderson Cancer Center


Leading Expert Speaker Biography

Dr. Steven Lin, MD Anderson Cancer Center **Dr. Steven Lin** is a Professor and Physician Scientist, with joint appointments in the Departments of Radiation Oncology and Experimental Radiation Oncology. Dr. Lin's practice focuses on thoracic malignancies, and he oversees several clinical trials including the use of proton beam therapy for esophageal cancer and in the combination of immunotherapy with radiotherapy in lung and esophageal cancers.

Dr. Lin runs a translational research team that evaluates biomarkers for treatment response and disease outcomes after chemoradiation therapy and immunotherapy. On the basic science side, Dr. Lin's main interests lie in identifying novel approaches that could enhance radiotherapy and immunotherapy combinations in lung cancer that could be translated to innovative clinical trials for patients.

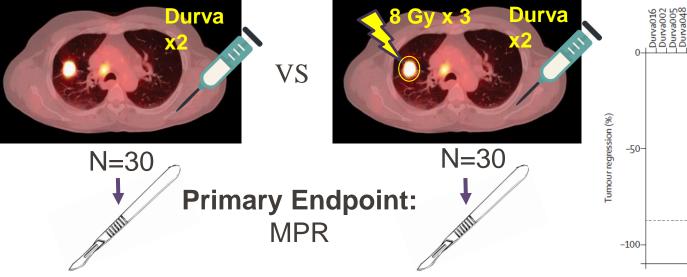


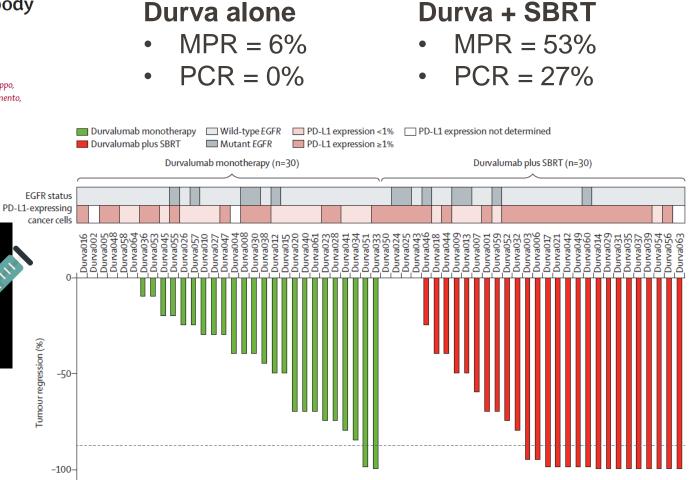
Making Cancer History®

Anti-cancer Immunity using Plinabulin in Combination with Radiation and Immune Checkpoint Inhibitors

Steven H. Lin, MD, PhD Professor Thoracic Radiation Oncology

Radiotherapy could stimulate an immune response through activating dendritic cells


Hernandez C et al., Oncogene 2016


Does radiotherapy induce anti-cancer immune response with immune checkpoint blockade? Promising in early-stage disease

➔ î ① Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial

Nasser K Altorki, Timothy E McGraw, Alain C Borczuk, Ashish Saxena, Jeffrey L Port, Brendon M Stiles, Benjamin E Lee, Nicholas J Sanfilippo, Ronald J Scheff, Bradley B Pua, James F Gruden, Paul J Christos, Cathy Spinelli, Joyce Gakuria, Manik Uppal, Bhavneet Binder, Olivier Elemento, Karla V Ballman, Silvia C Formenti

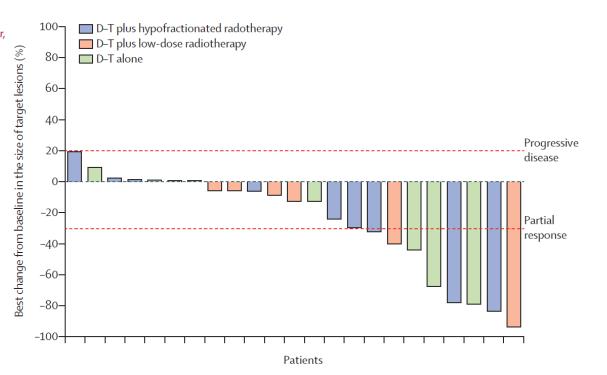
Stage I-IIIA resectable NSCLC (before Checkmate 816)

Altorki et al., Lancet Oncol 2021

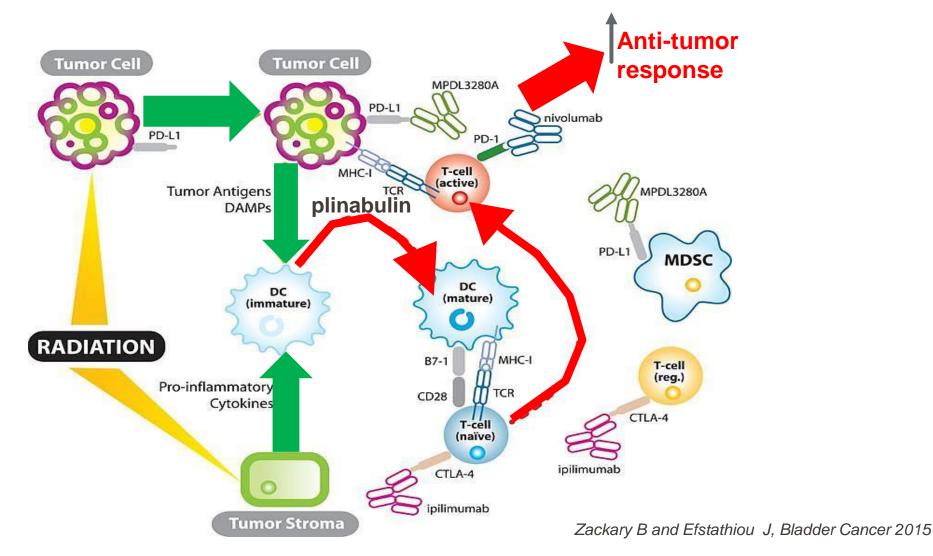
Phase II RCT of Durva/Treme +/- RT in PD-1 refractory advanced NSCLC (negative trial)

Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: an open-label, multicentre, randomised, phase 2 trial

Jonathan D Schoenfeld, Anita Giobbie-Hurder, Srinika Ranasinghe, Katrina Z Kao, Ana Lako, Junko Tsuji, Yang Liu, Ryan C Brennick, Ryan D Gentzler, Carrie Lee, Joleen Hubbard, Susanne M Arnold, James L Abbruzzese, Salma K Jabbour, Nataliya V Uboha, Kevin L Stephans, Jennifer M Johnson, Haeseong Park, Liza C Villaruz, Elad Sharon, Howard Streicher, Mansoor M Ahmed, Hayley Lyon, Carrie Cibuskis, Niall Lennon, Aashna Jhaveri, Lin Yang, Jennifer Altreuter, Lauren Gunasti, Jason L Weirather, Raymond H Mak, Mark M Awad, Scott J Rodig, Helen X Chen*, Catherine J Wu*, Arta M Monjazeb*, F Stephen Hodi*


- Overall Response (CR+PR) = 10%
- Disease control rate (CR/PR/SD) = **30%**

Radiotherapy:

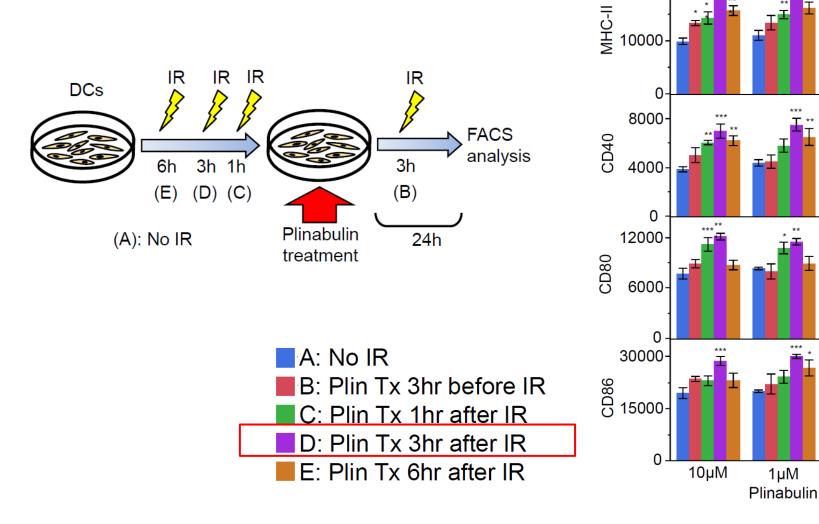

Low dose: 0.5 Gy BID QOD x 4 wks = 8 Gy

Hypofx RT: 8 Gy x 3 (one week) = 24 Gy

MD Anderson


Can we augment the effect of radiotherapy in combination with immunotherapy? Yes, by further <u>Activating Dendritic Cells</u>

Hypothesis for the Phase I MDACC trial

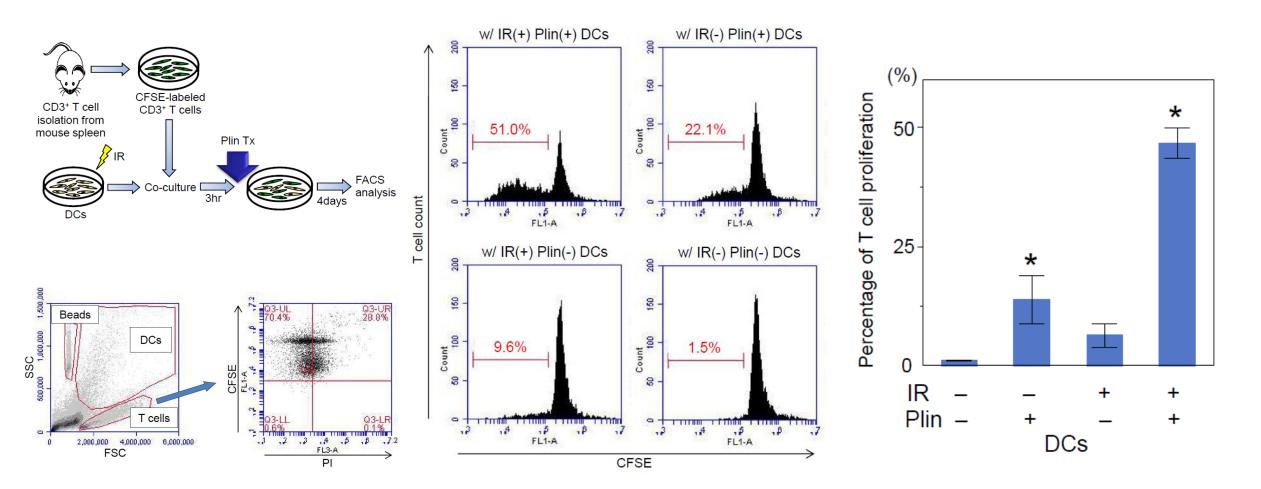

Priming the system with radiation followed by plinabulin + anti-PD-L1 is safe and efficacious in immunotherapy progressing advanced malignancies

 Need preclinical evidence to demonstrate RT priming followed by plinabulin could elicit anti-tumor immune response

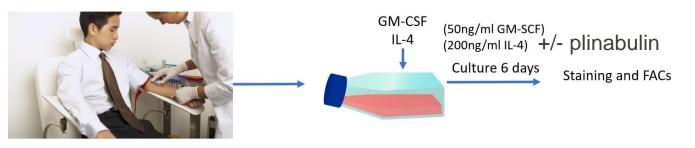
Optimal Sequencing of IR with Plinabulin to elicit DC activation: **RT before plinabulin** (3 hrs) but not Plinabulin before RT

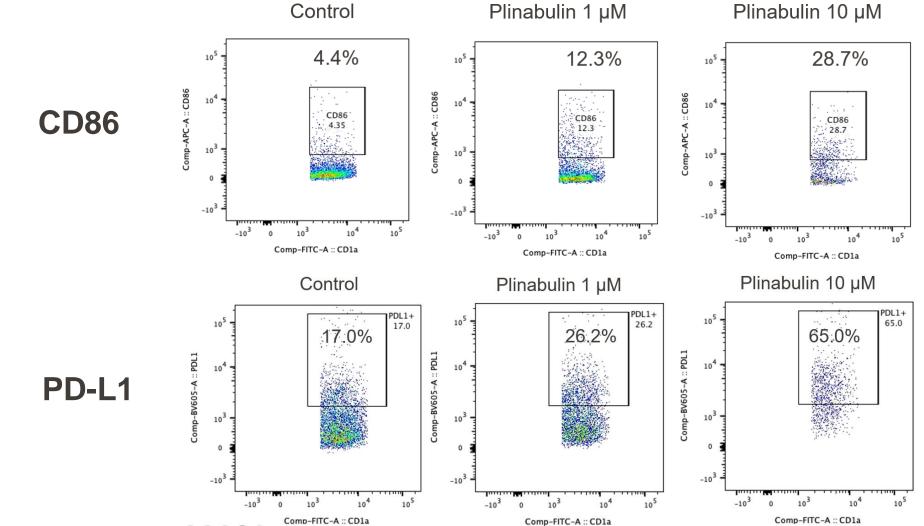
20000-

DMSO

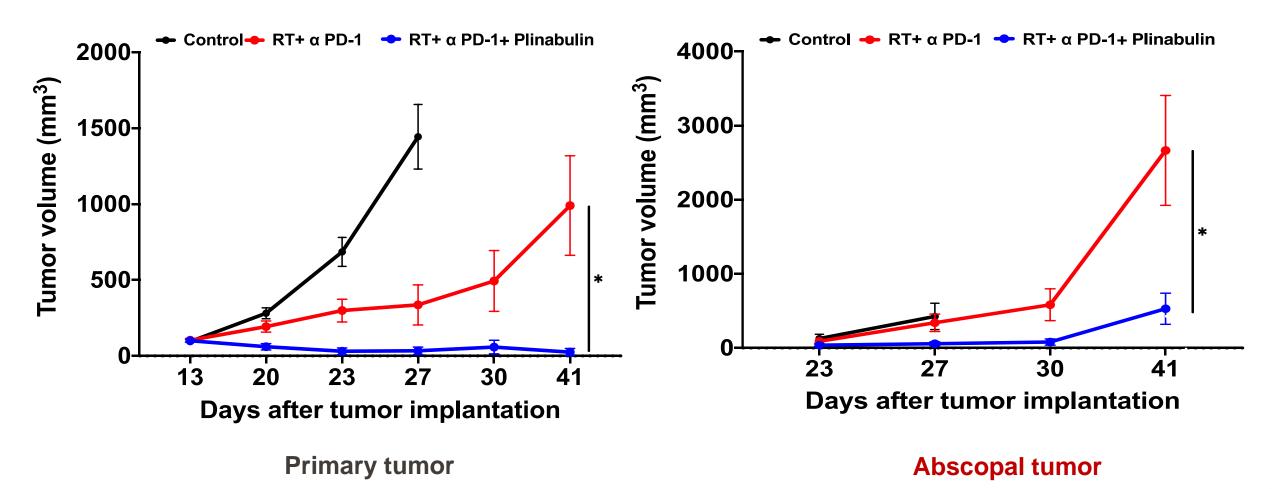

1µg/ml

LPS

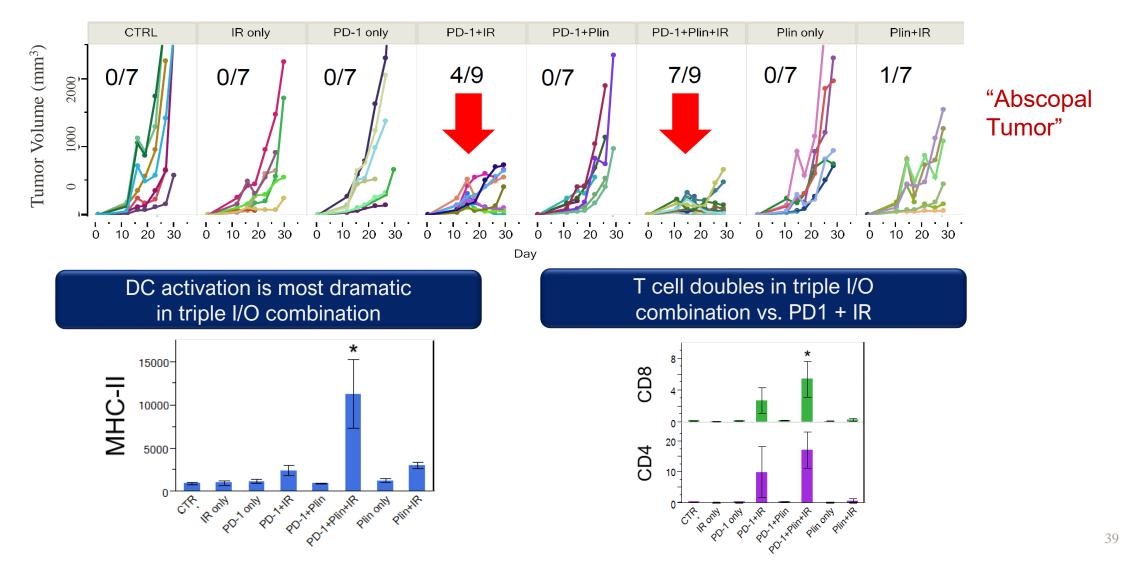

0.1µM


MD Anderson

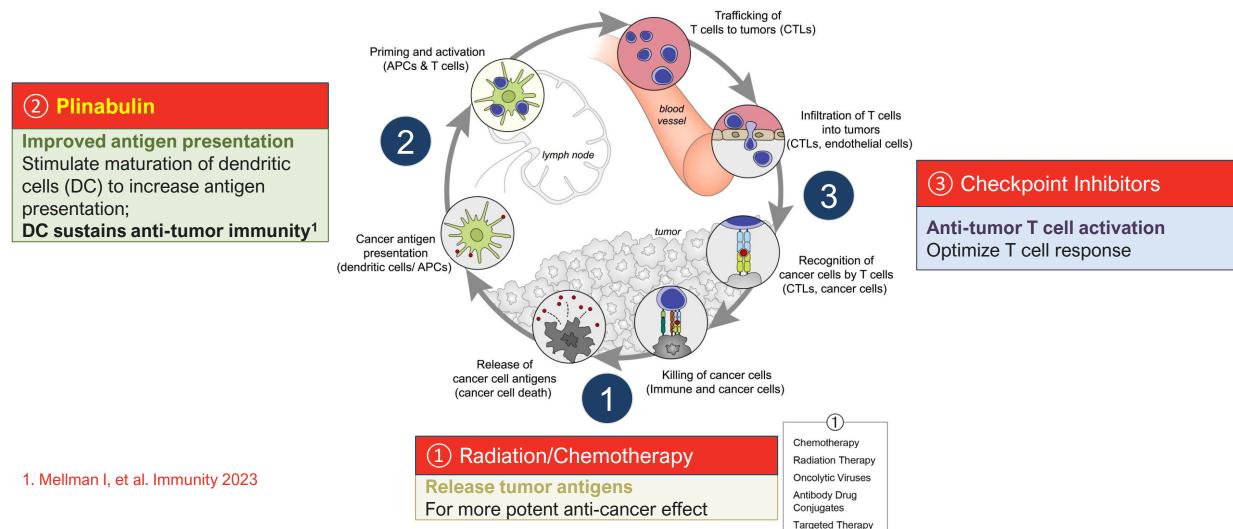
Plinabulin + RT enhances T-cell proliferation in mixed lymphocyte reaction



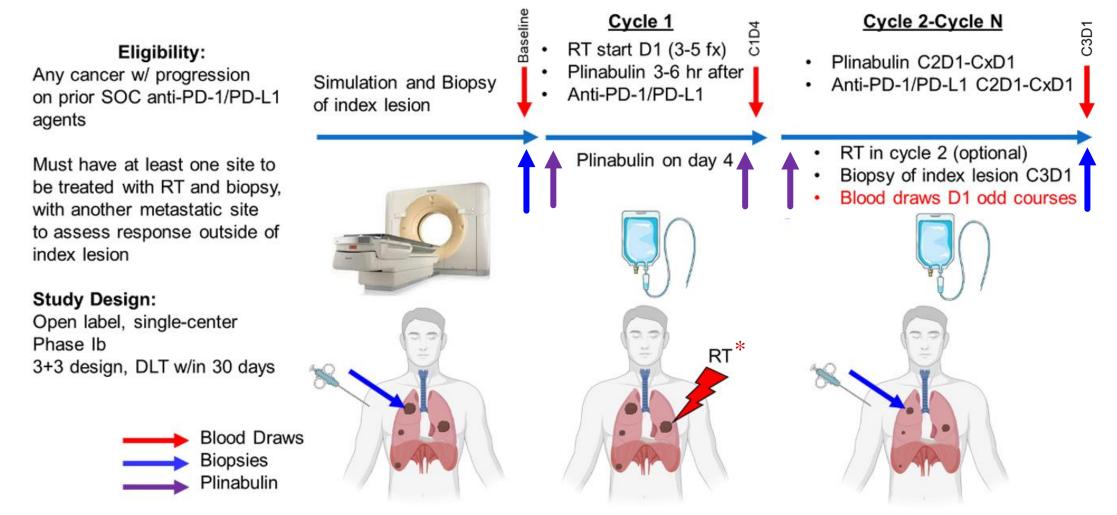
Plinabulin stim CD86, PD-L1 in human PBMCs derived DCs



Triple combination enhances local and distant tumor control compared to RT+anti-PD-1



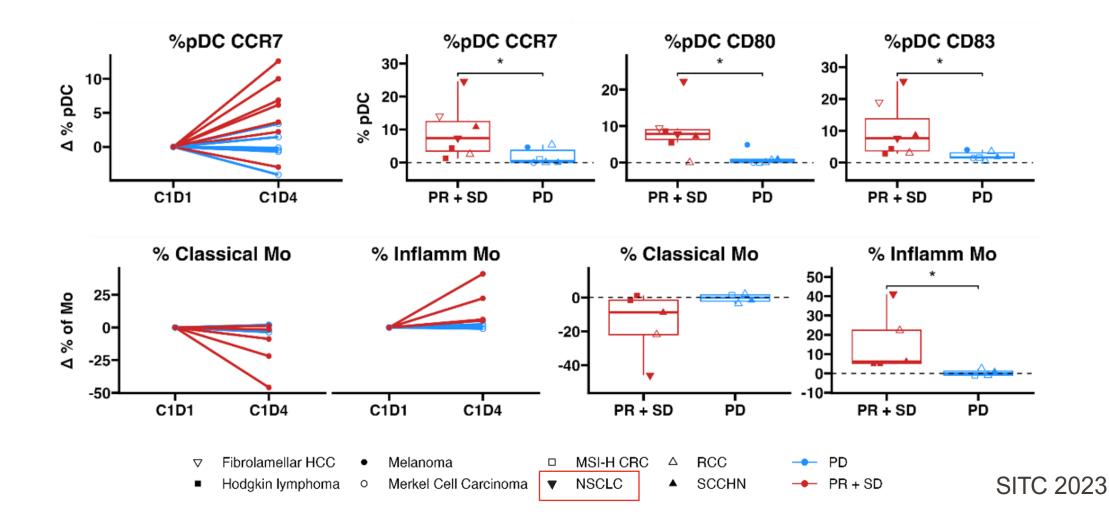
Plinabulin + RT increases PD-1 systemic and immunologic response


MD Anderson

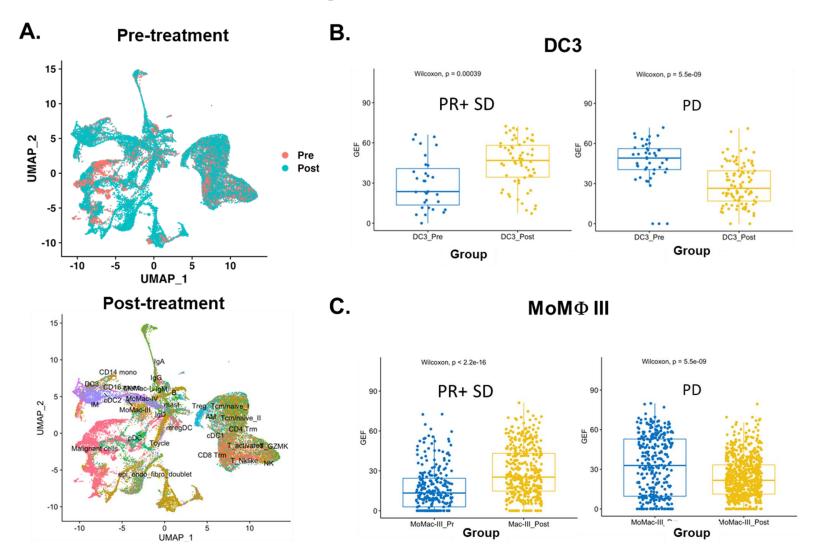
Plinabulin Enhances the Cancer Immunity Cycle When Used with Radiation/Chemotherapy and Anti-PD1


MD Anderson

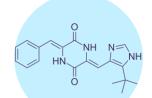
2020-0296: Phase 1b/2 study to evaluate safety of adding plinabulin + RT/IO in IO relapsed/refractory solid tumors



* RT = 24 Gy/3 fx; 50 Gy/4 fx; 20 Gy/5 fx


Primary endpoint: Safety and ORR/DCR

Significant increase in activated and CCR7+ DCs in peripheral blood on C1D4 with RT + plinabulin in PR+SD vs PD pts


Tumor scRNA seq reveals conducive TME for plinabulin/RT/anti-PD1 response in responder group

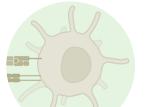
SITC 2023

MD Anderson

Plinabulin, Combined with Radiation and Immune Checkpoint Inhibitors, Induces DC Maturation and Potentially Re-sensitizes IO-failure Tumors to Immune Checkpoint Blockade

Plinabulin is a Unique Tubulin Binder

Plinabulin's tubulin binding site is distinct from that of other tubulin binding agents such as taxanes, vinca alkaloids, and colchicine.


Strong Preclinical Proof of Concept

Plinabulin in combination with radiation and anti-PD-1 activates DCs, stimulates T-cell proliferation, and achieves abscopal effects.

Clinical Evidence of Efficacy

In 10 IO-relapsed patients, >50% disease control rate and durable responses in heavily pre-treated patients,

Potential in clinical efficacy in a growing high-unmet need IO-failed population.

Clinical Evidence of Immune Activation

Responding patients exhibit early immune activation with DC maturation.

These IO effects are observed across multiple different cancer types, NSCLC, HNSCC and Hodgkin's Lymphoma, indicating broad applicability.

Plinabulin is Being Evaluated in Combination with Pembrolizumab and Docetaxel in 2L/3L NSCLC after PD-1/L1 Failure (Recruiting in China)

An Open-Label, Single-Arm, Phase II Investigator-Initiated Study (KeyPemIs-004; NCT05599789)						
Study Plan Primary Endpoint Secondary Endpoints						
 Estimated: 47 participants; futility analysis n=19 First patient dosed: March 1, 2023 Pembrolizumab 200 mg D1 Q3W (up to 35 cycles) Docetaxel 75 mg/m2 D1 Q3W (until PD, 	• ORR (RECIST 1.1)	 PFS (RECIST 1.1) OS DOR OS rate Safety 				
 untolerable SAE, or withdraw from patient) Plinabulin 30mg/m2 D1 Q3W (until PD, untolerable SAE, or withdraw from patient) 	PD-1/PD-L1 failed patients in N Current SOC: mPFS = 3-4 months: OR					

Inclusion Criteria:

- Metastatic NSCLC
- Progressed on anti-PD-1/L1 monotherapy or in combo with platinum-doublet
- 1L PFS > 6 months
- ECOG PS 0-1
- Must have measurable disease

Exclusion Criteria:

Current SOC: mPFS = 3-4 months; ORR: around 10%

- Prior use of docetaxel or plinabulin •
- Need to use steroid to treat ILD, or pneumonia ٠
- Need to use EGFR, ALK, or ROS1-target therapy as primary • treatment
- Brain metastasis, or leptomeningeal metastasis ٠

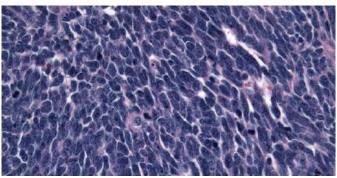
Unmet Need, Combination Strategies and ICI Resistance in ES-SCLC

Alberto Chiappori, MD Moffitt Cancer Center

Leading Expert Speaker Biography

Dr. Alberto Chiappori currently serves as Senior Member of Oncology and Medicine for the Thoracic Oncology Program at the H. Lee Moffitt Cancer Center and Research Institute in Tampa, Florida, and has been a member of the Thoracic Oncology Program at Moffitt since 2001.

Dr. Chiappori received his MD from the Universidad Peruana Cayetano Heredia in Lima, Peru. After graduation, he completed his residency at Southern Illinois University School of Medicine in Springfield, Illinois. He then went on to finish his fellowship and senior fellowship in medical oncology-hematology at Vanderbilt University School of Medicine in Nashville, Tennessee.


Dr. Alberto Chiappori, Moffitt Cancer Center Dr. Chiappori has been Board Certified in Medical Oncology since 1997. Dr. Chiappori has coauthored numerous articles in journals including Clinical Cancer Research, Journal of Thoracic Oncology, and Journal of Clinical Oncology. He is also an active member of the American Society of Clinical Oncology, the European Society of Medical Oncology, the American Association for Cancer Research and the International Association for the Study of Lung Cancer (IASLC).

SCLC Pathology

Spectrum of Neuroendocrine Carcinomas (NEC)

- SCLC presents as malignant, epithelial, high-grade, neuroendocrine tumors^[1,2]
 - Markers of epithelial origin
 - Neuroendocrine and neural differentiation markers: synaptophysin, chromogranin A, CD56
- SCLC falls along spectrum of WHO classification of neuroendocrine lung tumors^[2,3]
- Potential therapeutic Implications

HPF View of SCLC Tumor^[1]

WHO Classification ^[2,3]	Mitoses/ 10 HPF	Necrosis	Cytologic Features
Typical carcinoid	< 2	None	
Atypical carcinoid	2-10	Generally punctate	
Small-cell carcinoma	> 10	Generally abundant	Small size, scant cytoplasm, finely granular chromatin, faint nucleoli
Large-cell neuroendocrine carcinoma	> 10	Generally abundant	Cytologic features opposite SCLC

1. Jackman DM, et al. Lancet. 2005;366:1385-1396. 2. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. 2015. 3. Rossi G, et al. Curr Opin Pulm Med. 2014;20:332-339.

SCLC Diagnosis and Staging

- Diagnosis by FNA or biopsy
- Staging work-up
 - CT chest/abdomen/pelvis
 - Brain MRI
 - PET scan to rule out distant metastases
 - Further workup to rule out nodal involvement and/or distant metastases as clinically indicated

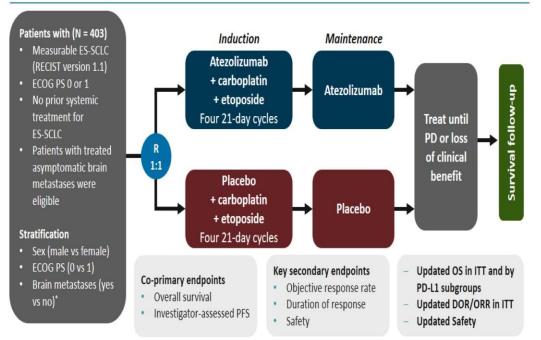
Kalemkerian GP. Cancer Imaging. 2011;11:253-258. Alvarado-Luna G, et al. Transl Lung Cancer Res. 2016;5:26-38. Sabari JK, et al. Nat Rev Clin Oncol. 2017;14:549-561. TNM staging system vs VA Lung Study Group staging system

TNM Staging	VALSG Staging	Incidence
T1-T2, N0, M0 (stage I)	Limited stage	~ 5%
T any, N any, M0 (stage I-III)	Limited stage; disease burden contained within radiation field	~ 30%
T any, N any, M1 (stage IV)	Extensive stage; disease burden beyond radiation field	~ 65%

TNM staging system is rarely used

Extensive-Stage SCLC:

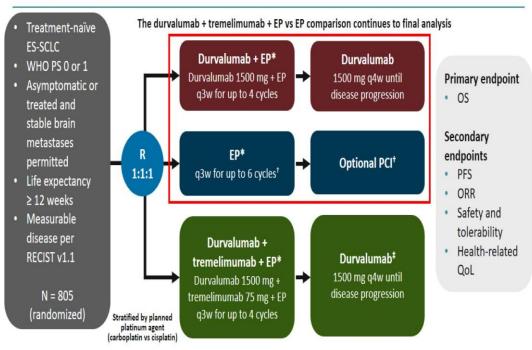
First-line Chemotherapy


- SoC: Platinum and etoposide for 4-6 cycles^[1]
- Efficacy:
 - Response rates: ~ 50% to 70%
 (CR~10-20%, PR~40-50%)
 - 2-yr OS: < 5%
 - Median PFS: 2-4 mos
 - Median OS: 9-11 mos
- Meta-analysis of 4 trials comparing cisplatin- vs carboplatin-based regimens (N = 663)^[2]
 - No differences in OS, PFS, ORR

Study	Cisplatin/ Irinotecan	Cisplatin/ Etoposide				
Noda ^[3]	(n = 77)	(n = 77)				
■ mOS, mos*	12.8	9.4				
■ 2-yr OS, %	19.5	5.2				
Hanna ^[4]	(n = 221)	(n = 110)				
■ mOS, mos	9.3	10.2				
• ORR, %	48	43.6				
 Toxicities 	More vomiting, diarrhea	More anemia, neutropenia, thrombocytopenia				
Inevitably, ALL patients progress:						
Recurrent disease						

1. Bernhardt EB, et al. Cancer Treat Res. 2016;170:301-322. 2. Rossi A, et al. J Clin Oncol. 2012;30:1692-1698. 3. Noda K, et al. N Engl J Med. 2002;346:85-91. 4. Hanna N, et al. J Clin Oncol. 2006;24:2038-2043.

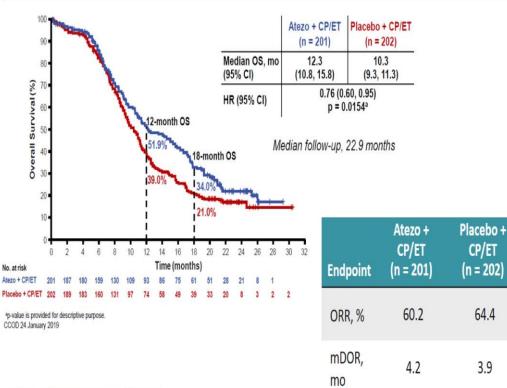
ES-SCLC Immunotherapy: New First Line Standard


First-Line Treatment: IMpower133 Study Design

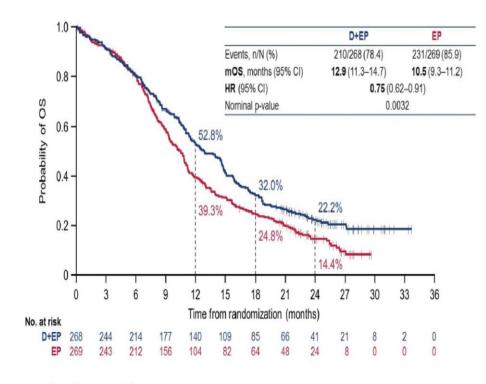
Note: Atezolizumab, 1200 mg IV, Day 1; Carboplatin, AUC 5 mg/mL/min IV, Day 1; Etoposide, 100 mg/m 2 IV, Days 1–3. *Only patients with treated brain metastases were eligible.

Horn L, et al. N Engl J Med. 2018;379:2220-2229; Reck M, et al. ESMO 2019. Presentation 17360.

First-Line Treatment: CASPIAN Study Design



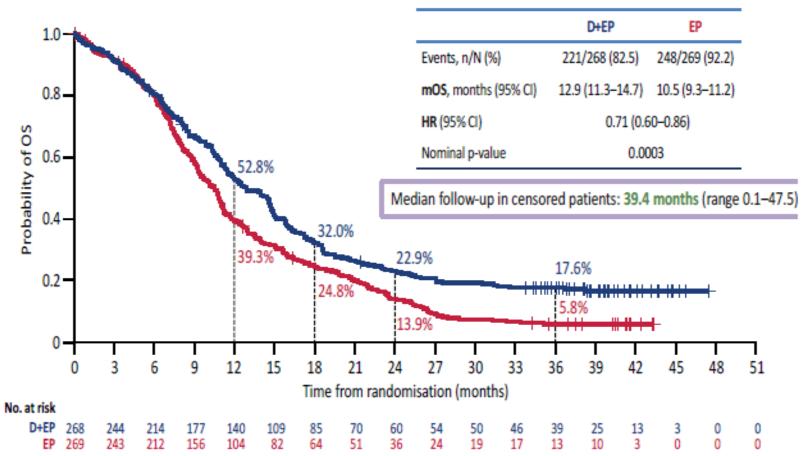
*EP consists of etoposide 80–100 mg/m² with either carboplatin AUC 5-6 or cisplatin 75-80 mg/m²; *Patients could receive an additional 2 cycles of EP (up to 6 cycles total) and PCI at the investigator's discretion; *Patients received an additional dose of tremelimumab post-EP. Paz-Ares L, et al. *Lancet*. 2019;394:1929-1939; Paz-Ares L, et al. WCLC 2019. Presentation PL02.11.


Extensive-Stage-SCLC Chemo-Immunotherapy:

New First Line Standard

First-Line Treatment: IMpower133 Updated Results

First-Line Treatment: CASPIAN Updated OS


Paz-Ares L, et al. ASCO[®] 2020. Presentation 9002.

Reck M, et al. ESMO 2019. Presentation 1736O.

First Line Therapy, ES-SCLC

Chemo-Immunotherapy Trials

3-year Overall Survival Update: D+EP vs EP

Paz-Ares, L. ESMO Open 2022

First Line Therapy, ES-SCLC

Chemo-Immunotherapy Trials

Addition of immune checkpoint blockade to chemotherapy is a new standard of care for ES-SCLC

1L ES-SCLC Chemo-IO Trial	Combination	ASCO Abstract	Status	Outcome Data
IMPower133	EP + atezolizumab		FDA Approved	mOS 12.3mo (EP-atezo) vs 10.3mo (EP-placebo) (HR 0.70)
CASPIAN	EP + durvalumab	ASCO 9002	FDA Approved	mOS 12.9mo (EP-durva) vs 10.5mo (EP) (HR 0.75)
Keynote-604	EP + pembrolizumab	ASCO 9001		mOS 10.8mo (EP-pembro) vs 9.7mo (EP) (HR 0.80 in IA2, NS; HR=0.75 in post-hoc "as treated analysis)
ECOG-ACRIN EA5161 Randomized Ph2	EP + nivolumab	ASCO 9000		mPFS 5.5mo (EP-nivo) vs 4.6mo (EP) (HR 0.65); mOS 11.3mo vs 8.5mo (HR 0.67)
*EP = platinum-et	toposide			

PRESENTED AT: 2020

#ASCO20 Slides are the property of the author, permission required for reuse.

56

Second-line Management of Recurrent SCLC

Recurrence ≤ 90 Days^[1]: Recurrence > 90 Days^[1]: "Resistant" or "Refractory" "Relapsed" or "Sensitive"

- Topotecan is the only FDA-approved second-line therapy for sensitive or relapsed SCLC
 - 1.5 mg/m² IV on Days 1-5 of a 21-day cycle^[2]
 - Oral topotecan: significant activity; improved OS and symptom control vs best supportive care^[3]

- Other recommended second-line agents include:^[1]
 - CAV, irinotecan, paclitaxel, docetaxel, temozolomide, gemcitabine, ifosfamide, vinorelbine
- Original regimen can be given if relapse
 > 6 mos
- Clinical trial is preferred

1. Schmittel A. Expert Rev Anticancer Ther. 2011;11:631-637. 2. Ardizzoni A, et al. J Clin Oncol. 1997;15:2090-2096. 3. O'Brien ME, et al. J Clin Oncol. 2006;24:5441-5447.

Plinabulin is Being Evaluated in Combination with Pembrolizumab and Etoposide/Platinum in First-Line ES-SCLC (Recruiting in China)

An Open-Label, Single-Arm, Phase II Investigator-Initiated Study (NCT05745350)

Study Plan	Primary endpoint	Secondary endpoints
 Estimated: 45 participants First patient dosed: March 25, 2024 Pembrolizumab 200 mg IV every 3 weeks (Q3W) on Day 1 Etoposide 100 mg/m2 IV Q3W on Days 1, 2, 3 	12-month PFS rate	 ORR DoR PFS OS TRAE (CTCAE v5.0) Exploratory Biomarker Research (blood and/or tissues)
 Carboplatin AUC 5 IV Q3W on Day 1 or Cisplatin 75 mg/m2 IV Q3W on Day 1 Plinabulin 30mg/m2 IV Q3W on Day 1. 	KEYNOTE-604 s 12-month PFS rate in p	tudy: atients with pembrolizumab plus EP is 13.6% vs.

12-month PFS rate in patients with pembrolizumab plus EP is 13.6% vs. 3.1% with placebo plus EP.

Inclusion Criteria:

- Newly diagnosed SCLC
- Stage IV
- ECOG o or 1
- Life Expectance ≥3 months
- Must have at least one measurable tumor lesion

Exclusion Criteria:

- Prior radiotherapy within 2 weeks
- Prior therapy with an anti-PD-1, anti-PD-L1, or anti-PD-L2 agent or with an agent directed to another co-inhibitory T-cell receptor (ie, CTLA-4, OX-40, CD137) or has previously participated in an MSD pembrolizumab (MK-3475) clinical trial and BeyondSpring Plinabulin clinical trial.

SEED Therapeutics

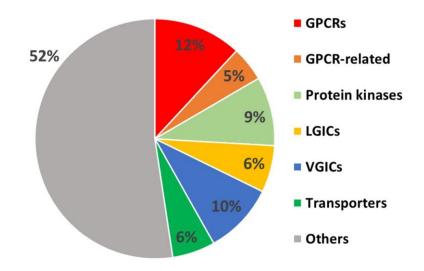
SEED Therapeutics: Targeted Protein Degradation Molecular Glue R&D

A global leader in Targeted Protein Degradation (TPD) with deep expertise to address its key challenges

- TPD can target 80% of the disease-causing proteins that were "undruggable". All top-20 global pharma have TPD development programs internally and/or though high value licensing and acquisitions
- Deploy multi-dimensional proprietary platform to identify the right E3 for Protein of Interest

Early validation and funding from Eli Lilly partnership

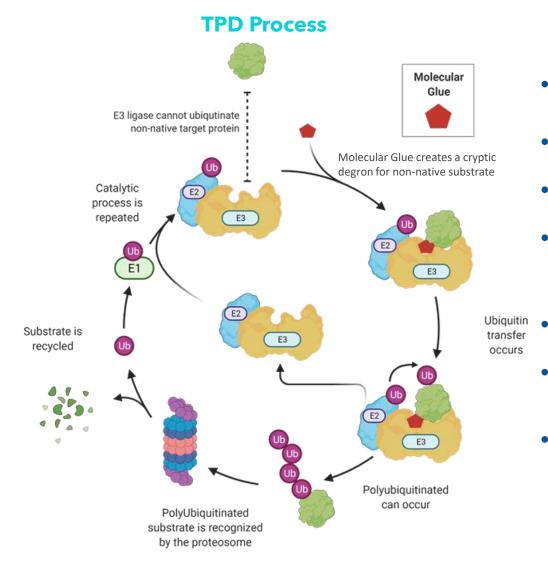

- Started joint TPD development with Eli Lilly shortly after inception, focusing on multiple pre-selected POIs by Lilly
- Address some most challenging POIs with \$10m upfront and milestone payment up to \$780m plus tiered royalties. Lilly also made a
 \$10m equity investment in SEED with an equity share of 19.9% post investment. BeyondSpring holds a 60.1% equity stake in SEED
- Our R&D program with Lilly has exceeded expectations with three milestone payments received


Diversified and fast evolving internal pipeline

- Have developed 8 programs across oncology, neurodegeneration, immunology, and antiviral indications over 3 years, including 6 internal programs and involving 5 novel E3s
- Lead program, a RBM39 Oral Degrader addresses a highly validated biology target with multi billion-dollar market potential and "First to Market, Best in Class" profile. Target first human dose (FHD) in 1H2025

Targeted Protein Degradation (TPD) Addresses 80% of Disease-Causing Proteins That Are Undruggable

TPD for Undruggable Proteins



Druggable Proteins

Sriram et al., Molecular Pharmacology, 2018

TPD Development History and Recent Renaissance

SEED Co-founders played pivotal roles in the advancement of TPD field

- 1996: Dr. Michele Pagano (SEED co-founder) discovered cell cycle regulation by TPD, including E3 ligases; published in *Science*
- 1999: Dr. Lan Huang (SEED co-founder and CEO) solved the 1st of the two E3 structures (HECT domain E3); published in Science
- 2002: Dr. Ning Zheng (SEED co-founder) solved the 2nd of the two E3 structure (Ring-finger E3); published in Nature
- 2003: US FDA approved Velcade, the first proteasome inhibitor for multiple myeloma. Dr. Avram Hershko (SEED co-founder) advised on Velcade development. Other companies started to develop new E3 inhibitors with no success
- 2004: **Dr. Avram Hershko won Nobel Prize** for his pioneering work in discovering all essential enzymes for TPD, including E1, E2, E3, and proteasome
- 2007: Dr. Ning Zheng coined the term "Molecular Glue (MG)" after solving TIR1 E3 structure and discovering the true function of Auxin, a plant hormone and the first natural MG to be identified; published in Nature
- 2010-2014: Revolutionary discovery of the mechanism of action of Revlimid (for treating multiple myeloma, had peak global annual sale of \$12.8b), a derivative of thalidomide, is in fact a MG, that binds to Cereblon (a E3) to degrade lkaros (a mutated POI). This discovery, published in *Nature*, ushered in the renaissance of TPD drug discovery.

World Class Leadership Team and Exceptional Insights in TPD Drug R&D

Avram Hershko MD, PhD⁺	Ning Zheng, PhD ⁺	Michele Pagano, MD+	Lan Huang, PhD ** (Chairman & CEO)
"Godfather" of TPD; 2004 Nobel Laureate; Advisor to Millennium on developing Velcade	Howard Hughes Professor, University of Washington; World's foremost thought leader on E3 and MG	Howard Hughes Professor, NYU Medical School; Global thought leader on TPD biology and application	E3 structural expert; Serial biotech entrepreneur with 20+ years of drug development experience, including assets that are NDA-ready
James Tonra, PhD* (President & CSO)	Ko-Yung Tung, JD*	Linus Lin, PhD*	Jackson Tai*
	Ko-Yung Tung, JD*	Linus Lin, PhD*	Jackson Tai*

*SEED Co-founder and Scientific Advisory Board Member *Board Member

Highly Experienced in-House R&D Team

Discovery Labs, City of Science, King of Prussia, PA

- 10,000 ft² including 7000 ft² lab space
- All crucial discovery work are conducted by internal research team

Highly Experienced Internal R&D Team

- >100 years combined small molecule hit-to-lead and lead optimization work
- >60 years Medicinal Chemistry and SBDD work
- >60 years DMPK work
- >60 years nonclinical development/safety work
- >40 IND filings
- >12 drug approvals, including multiple biologics and the small molecules Paritaprevir, Glecaprevir, XERMELO, REZUROCK, GV-971 and Modafinil

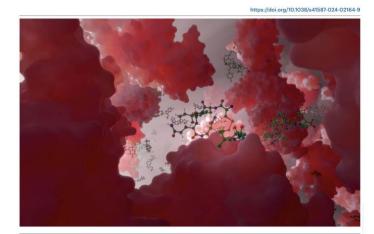
Controlled Protein Degradation: Reprogramming Ubiquitin Ligases with Molecular Glues to Target Un-ligandable Proteins

PROTAC

Molecular Glue

LIMITATIONS:

- × Bi-functional molecule
- × >500 Da (may limit cell availability)
- High affinity on both ends (ligandable pockets required)
- × Mostly limited to two UBLs


ADVANTAGES:

- ✓ Involves a single non-chimeric small molecule
- ✓ Small enough to be drug-like compounds
- Does not need high affinity on either sides (ligandable pockets not required)
- ✓ Many UBLs can be used (Substrate-centric)

- 1. PROTAC, lead asset in phase 3 development, validates the TPD field;
- 2. High value companies in PROTAC companies, including Arvinas and Kymera (\$>2 B market cap)

"Nature Biotechnology" Review on "The Glue Degraders" (3/6/2024)

News feature

THE GLUE DEGRADERS

Companies are hoping to discover small molecules that remove undruggable proteins. It won't be easy. **By Ken Garber**

n December 2023, two days after the US	at the meeting. The Novartis work is the lat-	assays with recombinant proteins, adding time
Food and Drug Administration approved	est sign that molecular glue degraders, which	and expense, and involves extensive follow-up
separate gene editing and gene therapy	hijack the cell's disposal machinery to remove	work to validate hits and understand mecha-
treatments for sickle cell disease. Novarits	disease-related proteins, have arrived.	nism of action. And those hits are are because
biochemist Pamela Ting made a plenary	Much of pharma is invested, directly or	it is hard to drug protein - protein interactions
presentation at the American Society of Hema-	through partnerships. In 2019 Bristol Myers	With hit rates low, small-molecule libraries
tologyannul meeting. She described a pheno-	Squibb sport 37 billion to acquire Celgene	must be sizable. And the field does not yet
typic screen that yielded hits causing a surge	and its portfolio of molecular glue degraders.	know what chemical features molecular
of fetal hemoglobin, the same protein that the	More that two dozen biotech companies	glues have in common, making it difficult to
recently approved gene editing therapy is engi-	are now seeking these drugs (Table 1). "We're	select these libraries. Biological information
neered to produce. But unlike that treatment,	very active in this space and see tremendous	on the more than 6002 Bigases – the enzymes
which is priced at \$2.2 million. Novartis's com-	potentialin molecular glues," says Ryan Potts,	that molecular glues recruit to degrad
pounds are small-molecule protein degraders,	head of the induced proximity platform	adrug's target – is scant, except for a handful
molecular 'glues' that would be much cheaper	at Amgen.	of these proteins. For all these reasons, mole
to produce and administer. Animal studies	Yet the field faces some serious obstacles.	cular glue discovery remains a high-risk
were positive. "We are currently conducting	Prospective screening for molecular glue	enterprise. The field needs a success story'
the experiments necessary to translate these	degraders is a major undertaking (Fig. 1). It's	says Simon Balley, head of drug discovery
findings to a human clinical trial." Ting said	oftendomie neels, unlikestandroliochemical	at Plexium.

nature biotechnology

BeyondSpring

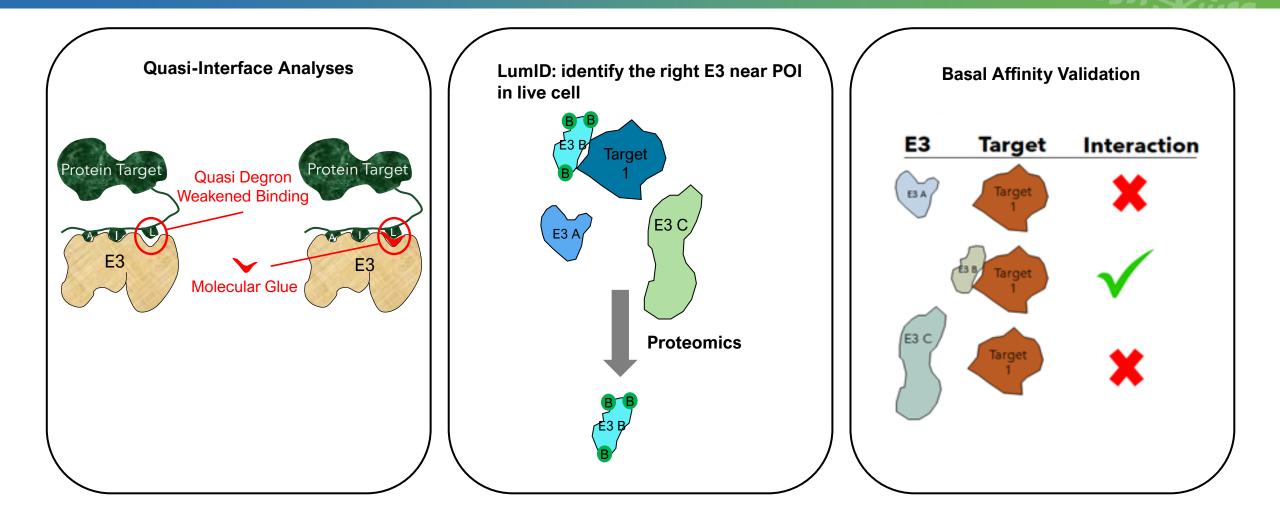
SEED was prominently featured in "Nature Biotechnology" Review.

Table 1 | Selected molecular glue degrader companies discussed

Company	Pharma partners	Discovery approach	Deployed E3 ligases	Lead program	
Monte Rosa Therapeutics	Roche	Remodel cereblon to recruit neosubstrates; proximity assays, proteomics	Cereblon	MRT-2359, GSPT1 degrader, phase 1 (cancer)	
Plexium	Amgen, AbbVie	Miniaturized, cell-based DNA-encoded library screening; target-centric	Cereblon, DCAF11, others undisclosed	IKZF2 degrader, phase (cancer) December 202	
Seed Therapeutics	Eli Lilly	Target centric; detect basal E3-target interactions; proximity assays	Working with 25–30 E3s, including DCAF15	ST-00937, RBM39 degrader (cancer), IND filing, 2H24	
Novartis	Dunad Therapeutics	Phenotypic screens, cereblon binders, others undisclosed	Cereblon, others undisclosed	Wiz degrader (sickle ce anemia), IND-enabling studies	
Proxygen	Boehringer Ingelheim, Merck KGaA, Merck & Co.	Broad range, from unbiased phenotypic screens to target-centric	Many; undisclosed	Undisclosed	
A-Alpha Bio	Amgen, Bristol Myers Squibb, Kymera Therapeutics	Detect basal E3-target interactions using yeast cell surface display, mutagenesis to interrogate interface	Many; undisclosed	Undisclosed	

Others in this space include Ambagon Therapeutics, Astellas Pharma, AstraZeneca, Bayer, Biotheryx, Celgene (Bristol Myers Squibb), ChemPartner, Coho Therapeutics, Degron Therapeutics, Gandeeva Therapeutics, GSK, GluBio Therapeutics, Magnet Biomedicine, Neomorph, Orionis Biosciences, PhoreMost, Pin Therapeutics, Progenra, Proximity Therapeutics, Ranok Therapeutics, Revolution Medicines, Salarius Pharmaceuticals, SK Biopharmaceuticals, SyntheX and Triana Biomedicines. IND, Investigational New Drug.

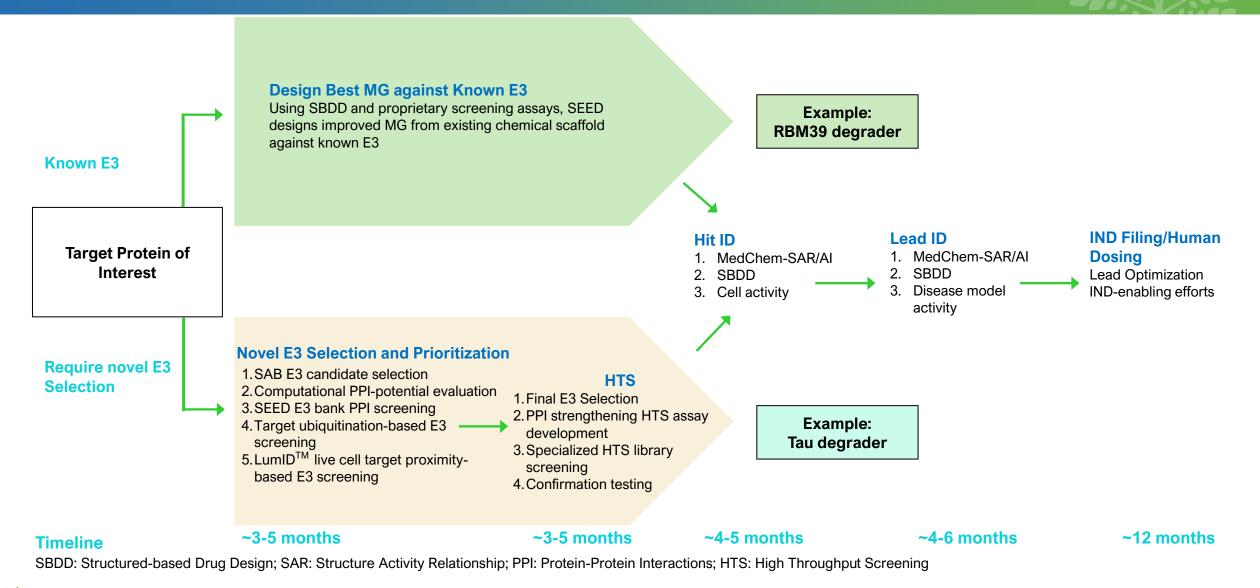
Sticking without glue


Molecular glue company Seed Therapeutics, like Proxygen, is looking beyond cereblon. It's a majority-owned subsidiary of Beyond-Spring Pharmaceuticals, a drug company co-founded by Lan Huang, who published the first E3–E2 crystal structure¹⁵, and Ning Zheng, who solved the structure of auxin bound to its transport inhibitor response1 (TIR1) receptor⁴.

Seed emphasizes proper E3 selection. The discovery process is lengthy: pick a candidate E3 on the basis of complementarity with the target protein (as predicted by AlphaFold and other computational methods) and cell location of the E3; detect a basal E3-target interaction in a cell system; confirm ability of the E3 to ubiquitinate the target; and perform high-throughput screening for degraders, followed by validation assays and then medicinal

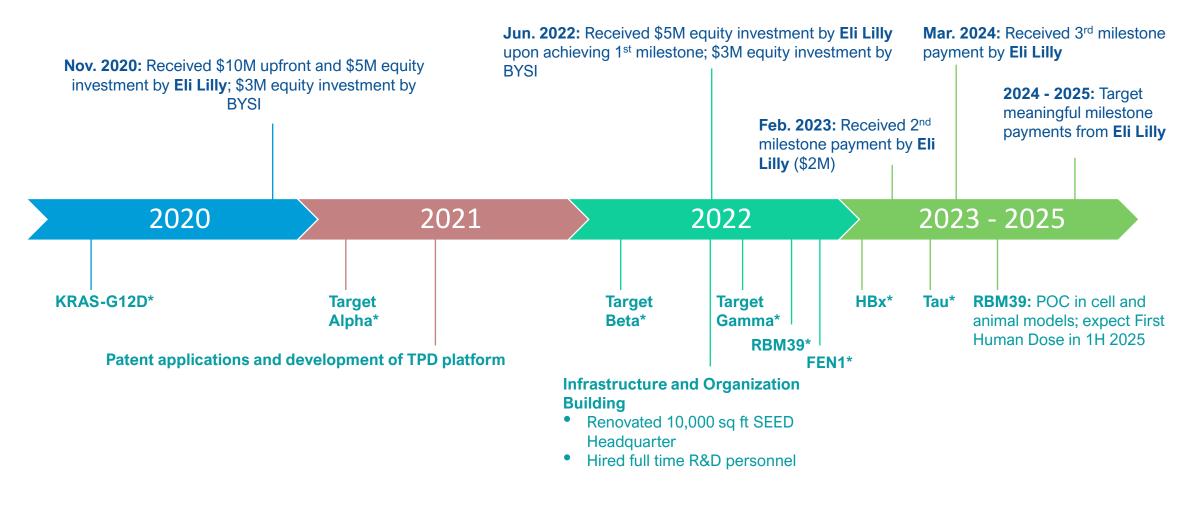
Garber, Nature Biotechnology (2024)

67


Multi-Dimensional and Proprietary Platform for E3 Selection

POI: Protein of Interest

Powerful Two-Pronged Approach Tackling Both Novel and Known E3s

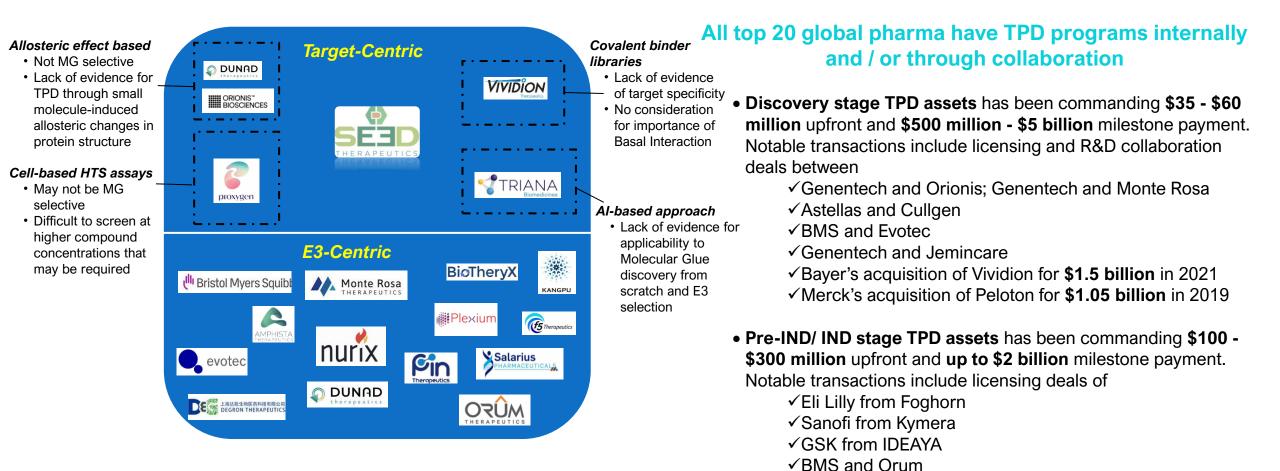


Weight Beyond Spring

Productive Development History

Global Pharma Partnership Milestones

SEED Internal Program Milestones


Diversified and Fast Progressing Pipeline

Indication	Target Protein	Target Selection	E3 Ligase ID	Molecular Glue HTS	Lead ID	IND Candidate	IND Filing
	RBM39						1H 2025 FHD
Oncology	KRAS-G12D						
Cheology	Target Beta						
	FEN1						
Neurodegeneration	Target Alpha						
	Tau						
Immunology	Target Gamma						
Antiviral	HBx						

TPD: a High Value and Novel Therapeutic Modality

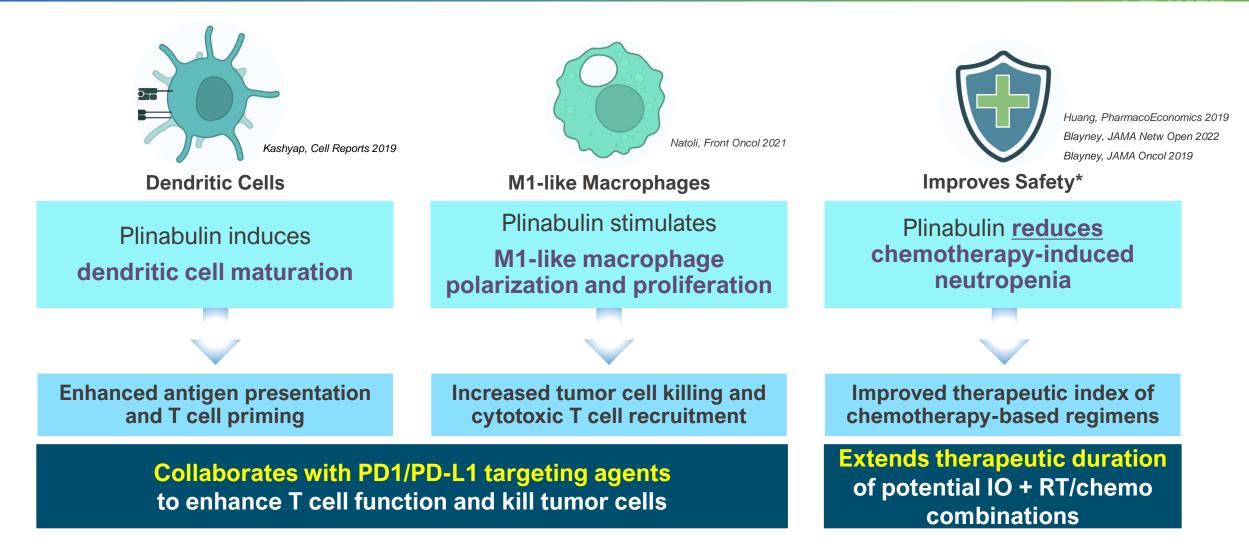
- Clinical stage TPD asset (early Phase II) has commanded \$650 million upfront and \$350 million equity investment in
 - ✓ Pfizer/ Arvinas' collaboration

Ø	Target-Centric Approach	 Most TPD companies are E3 centric ✓ Majority of SEED's development efforts are target centric, giving SEED unique abilities to go after high value targets
?	Overcome Key Challenges	 How to identify the right E3 for POI? ✓ SEED has unique insights and identified 5 novel E3s for 8 Protein of Interests over 3 years
~~~	Highly Effective Translation	World-leading scientific founding team + experienced R&D team $\rightarrow$ successful and quick translation of breakthrough TPD platform to deep and high value pipeline
	Two Pronged Approach	<ul> <li>De-risked revenue model:</li> <li>1) R&amp;D partnership with upfront and milestone payment, and</li> <li>2) Speedy internal program development to create shareholder value</li> </ul>










# **Closing Remarks**

Lan Huang, PhD BeyondSpring Pharmaceuticals, Inc.



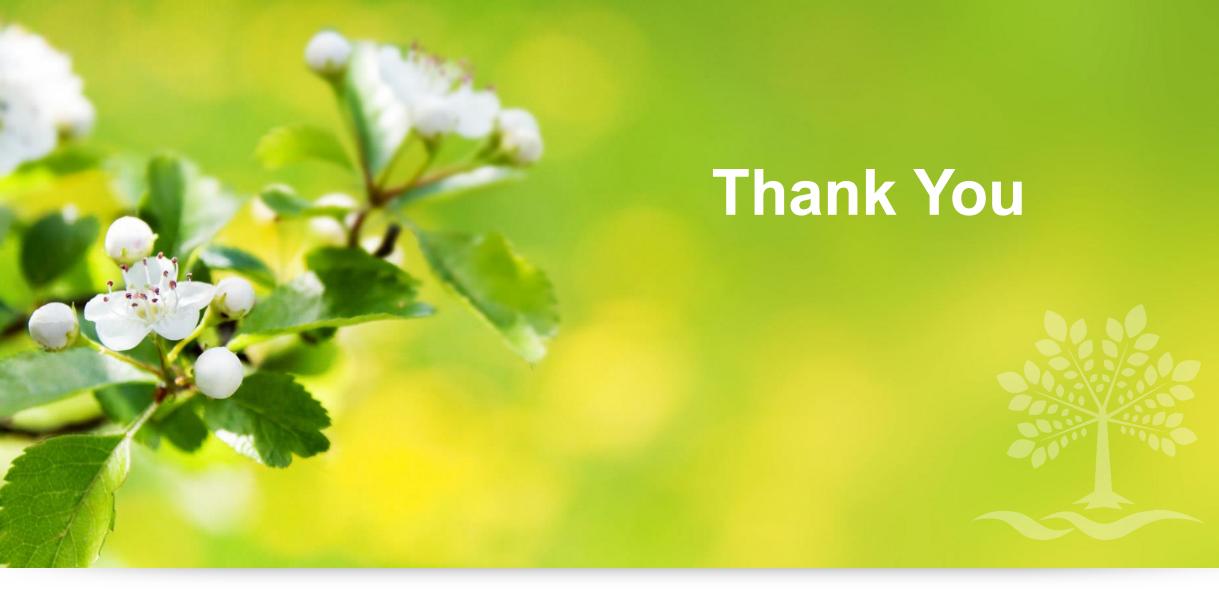
Plinabulin's effects on DC maturation and reduced chemo-toxicity could partner with RT/Chemo/ADC + PD-1/PD-L1 inhibitor to re-sensitize patients who failed PD-1/PD-L1 inhibitors





# Plinabulin Clinical Development

	Indication/Target	Program	Preclinical	Phase 1	Phase 2	Phase 3	Trial Name / Collaborator	
itage	NSCLC (2 nd /3 rd line)	Plinabulin + Docetaxel					DUBLIN-3	$\bigotimes$
Late stage	CIN Prevention	Plinabulin alone or + Pegfilgrastim					PROTECTIVE-1 & PROTECTIVE-2	$\bigotimes$
d Trials	NSCLC (2nd/3rd line PD-1 failed)	Plinabulin + Pembrolizumab + Docetaxel					Study 303	Expect Preliminary Data 2H 2024
ator-Initiated	ES-SCLC (1 st line)	Plinabulin + Pembrolizumab + Etoposide / Platinum					Study 302	Expect Preliminary Data 1H 2025
Investigator	Multiple cancers (PD-1/PD-L1 failed)	Plinabulin + PD-1/PD-L1 + Radiation					THE UNIVERSITY OF TEXAS MDAnderson Cancer Center	$\bigotimes$


# Summary



	Plinabulin: Safety & Efficacy	Lead Asset Plinabulin: >700 cancer patients treated with good tolerability; 2 Positive Phase 3 Studies
$\overline{\heartsuit}$	Plinabulin Potential	Plinabulin: Potential in re-sensitizing in PD-1/PD-L1 failed patients in multiple cancers, significant unmet needs and treatment limitations
	SEED: Novel TPD Platform&Pipeline	SEED: 8 Disclosed Pipeline Assets with 1 oncology asset expected to have first human dose in 1H 2025
and the	Premier Partnerships	SEED: Investment and R&D Collaboration from Eli Lilly
Fø	Intellectual Property	Strong Intellectual Property and Technology Protection

l





