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Members of the HECT family of E3 ubiquitin-protein ligases are characterized by a C-terminal HECT domain that
catalyzes the covalent attachment of ubiquitin to substrate proteins and by N-terminal extensions of variable
length anddomainarchitecture that determine the substrate spectrumof a respectiveHECT E3. Since their discov-
ery in 1995, it has become clear that deregulation of distinct HECT E3s plays an eminent role in human disease or
disease-related processes including cancer, cardiovascular and neurological disorders, viral infections, and im-
mune response. Thus, a detailed understanding of the structure–function aspects of HECT E3s as well as the iden-
tification and characterization of the substrates and regulators of HECT E3s is critical in developing new
approaches in the treatment of respective diseases. In this review, we summarize what is currently known
about mammalian HECT E3s, with a focus on their biological functions and roles in pathophysiology.This article
is part of a Special Issue entitled: Ubiquitin–ProteasomeSystem.Guest Editors: Thomas Sommer andDieterH.Wolf.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Covalent attachment of ubiquitin to proteins (“ubiquitination”) is
involved in the control of many, if not all, eukaryotic processes indi-
cating that the recognition of proteins by the ubiquitin-conjugation
system must be a highly specific and adjustable process [1,2]. Sub-
strate specificity of the ubiquitin-conjugation system is mainly medi-
ated by E3 ubiquitin-protein ligases that constitute a large class of
proteins, with the human genome encoding more than 600 putative
E3s or E3 complexes [1–3]. In a simplified view, E3s are characterized
by the presence of at least two functional domains/regions. One
domain mediates the interaction with the cognate E2 ubiquitin-
conjugating enzyme(s), while the other is responsible for the specific
recognition of substrate proteins. Based on the identity of the domain
involved in E2 interaction, E3 proteins can be grouped into two main
families, HECT domain E3s and RING and RING-like (e.g., U-box)
domain E3s [3–6]. While the HECT domain is assumed to have an en-
zymatic activity and to directly catalyze the covalent attachment of
ubiquitin to substrate proteins via a ubiquitin–HECT thioester
tin–Proteasome System. Guest
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complex intermediate [3–5], most RING/RING-like domains do not
appear to have an enzymatic activity but rather act as allosteric acti-
vators of E2s [3,6]. Notably, members of the RING-between-RING
(RBR) subfamily of RING E3s have recently been shown to act as
RING/HECT E3 hybrids: one RING functions as docking site for cog-
nate E2s (UbcH7, UbcH5 family members), while the other RING ac-
cepts ubiquitin from the E2 in the form of a thioester complex as an
obligatory intermediate step in RBR-mediated ubiquitination [7–10].

HECT E3s were first reported in 1995 and, thus, were the first fam-
ily of E3s described [11]. Like ubiquitin, HECT E3s are found in all
eukaryotic organisms, with the genome of Saccharomyces cerevisiae
and the human genome encoding 5 and 28 HECT E3s, respectively
[4]. Furthermore, although they do not encode ubiquitin, the ge-
nomes of some pathogenic bacteria (enterohemorrhagic Escherichia
coli (EHEC) O157:H7; Salmonella enterica) encode HECT domain-like
E3s that are injected into host cells and presumably exploit the
ubiquitin-conjugation system for bacterial purposes [12–15]. HECT
E3s range in size from approximately 80 kDa to more than 500 kDa
and are characterized by the HECT domain, a C-terminal region of ap-
proximately 350 amino acids in length with significant similarity to
the C terminus of E6AP (Homologous to E6AP C Terminus) [4,5,11].
While the HECT domain represents the catalytic domain [11,16], the
substrate specificity of HECT E3s is mainly determined by their re-
spective N-terminal extensions (Fig. 1). Based on the presence of dis-
tinct amino acid sequence motifs or domains within these N-terminal
extensions, humanHECT E3s have been grouped into three subfamilies:
Nedd4/Nedd4-like E3s, which contain WW domains, HERC (HECT and
RCC1-like domain) E3s harboring RLDs (RCC1-Like Domains), and
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Fig. 1. The human HECT E3 ligases. The human genome encodes 28 members of the HECT E3 family. In all cases, the HECT domain is located at the C terminus of the proteins. The
substrate binding is mediated by various domains that are located N-terminal to the HECT domain. The human HECT E3 ligases can be roughly grouped into three families. The
NEDD4 family and the HERC family can be readily identified by their distinct domain architectures. NEDD4 members contain an N-terminal C2 domain, 2–4 WW domains and a
C-terminal HECT domain. The HERC family members have one or more RCC1-like domains (RLDs). The small HERCs carry a single RLD and large HERCs contain more than one
RLD and additional domains. The remaining HECT ligases may contain varied number and types of domains. Schematics are shown for those HECT E3s discussed in this review.
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“other” HECT E3s that contain neither RLDs nor WW domains (Fig. 1)
[4,5]. Note that this classification is an oversimplification and does not
take evolutional considerations into account (for evolutional classifica-
tion of HECT E3s, see [17]). However, for the sake of convenience, we
will use this nomenclature here, when discussing the physiological as-
pects of selected HECT E3s.
2. Structural and functional aspects of the HECT domain

The HECT domain mediates the interaction with cognate E2s,
mainly UbcH7 and members of the UbcH5 subfamily of E2s (for a
more comprehensive analysis of the interaction of HECT E3s with
E2s, see [18,19]), and forms a thioester complex with ubiquitin via
an evolutionally conserved cysteine residue [4,5,11,20]. Since the
ability to form ubiquitin thioester complexes in the presence of E2s
is necessary for substrate ubiquitination, it is assumed that HECT
E3s catalyze the final attachment of ubiquitin to substrate proteins
as well as to ubiquitin (in case of ubiquitin chain formation).
2.1. Structure of the HECT domain

Structures of 7 HECT domains (E6AP, WWP1, SMURF2, NEDD4-2/
NEDD4L, HUWE1, yeast Rsp5, NEDD4) and the C-terminal portion of
the HECT domain of UBR5 have been solved [21–28] (note that struc-
tures for full-length HECT E3s are not yet available). The HECT do-
main adopts a bilobal structure, with the C-terminal lobe containing
the catalytic cysteine residue and the N-terminal lobe representing
the E2 binding domain. The lobes are linked by a flexible hinge region
whichpresumably facilitates proper positioning of the catalytic cysteine
towards the ubiquitin-E2 thioester bond to allow transthioesterification
of ubiquitin to the HECT domain: In the absence of ubiquitin, the dis-
tance between the catalytic cysteine residue of an unloaded E2 and
the catalytic cysteine of the HECT domain is rather large (e.g., ~41 Å
in the case of E6AP and ~16 Å in the case of WWP1) [21–23], in fact
too large for transthioesterification. The distance appears to be signifi-
cantly shortened when a ubiquitin-loaded E2 is bound (~8 Å, as
shown for the complex between NEDD4-2/NEDD4L and ubiquitin-
loaded UbcH5B [24]). Thus, the topology of HECT-E2 complexes de-
pends on the ubiquitin-loading status of the E2 and involves non-
covalent interactions between the N lobe and the E2 and ubiquitin
and the C lobe [24].
2.2. Regulation of HECT domain activity

The activity of HECT E3s can be regulated at two general levels.
One level is the association of an HECT E3 with its substrate pro-
tein(s), which in most cases is mediated by specific protein–protein
interaction domains/motifs located N-terminal to the HECT domain
(Fig. 1). In addition, at least some of the interaction motifs present
in HECT E3s bind regulatory proteins that either facilitate (“adaptor
and/or auxiliary proteins”) or interfere with (“inhibitory proteins”)
the interaction of substrates with their cognate E3s. For example,
Ndfip1 and Ndfip2 as well as several members of the α-arrestin pro-
tein family (Arrdc) bind to the WW domains of distinct Nedd4 family
members (see 3.1) through PY motifs [29–33], thereby assisting the
ubiquitination of respective substrate proteins [5,32,33]. In contrast,
binding of 14-3-3 proteins to Nedd4-2, which is regulated by
hormone-induced phosphorylation of Nedd4-2 [5,34–36], precludes
the interaction of Nedd4-2 with its substrates (e.g., epithelial sodium
channel subunits) [5,34,35]. For more detailed discussions of poten-
tial mechanisms involved in regulating HECT E3-substrate interac-
tion, see refs. [4,5,37–39].

The other level concerns the catalytic activity of the HECT domain
including the interaction with its cognate E2 (for a review, see [37]).
Two illustrative examples for the regulation at the HECT domain level
are provided by SMURF2 and Itch [23,40,41], both of which are mem-
bers of the NEDD4-like family of E3s and contain WW domains and an
N-terminal C2 domain (Fig. 1). Compared to other HECT domains, the
HECT domain of SMURF2 interacts rather ineffectively with its E2
(UbcH7). In fact, for efficient interaction between the HECT domain of
SMURF2 and Ubch7 an additional protein – SMAD7 which binds to
both the HECT domain of SMURF2 and UbcH7 – is required [23]. Fur-
thermore, NMR studies showed that in the context of full-length
SMURF2, the catalytic cysteine of the HECT domain is not accessible
for UbcH7, as it is disguised by an intramolecular interaction of the C2
domain with the HECT domain. The inhibitory effect of the C2 domain
is also released by SMAD7, the expression of which is regulated by ex-
tracellular stimuli (e.g., TGFβ) [40]. With respect to Itch, coprecipitation
analyses indicate that the HECT domain interacts with theWWdomain
rendering Itch inactive. Furthermore, stimulus-dependent phosphory-
lation of distinct serine and threonine residues in the N terminus of
Itch induces a conformational change resulting in the disruption of the
WW–HECT domain interaction and, consequently, the activation of
Itch activity [41]. Taken together, the activity of at least some HECT do-
mains can be regulated by intra- and/or intermolecular interactions
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ensuring that the respective substrate proteins are only targeted for
ubiquitination when appropriate.
2.3. Ubiquitin chain formation

In many cases, proteins are modified by ubiquitin chains (“poly-
ubiquitination”) rather than a single ubiquitin moiety (“mono-
ubiquitination”). Furthermore, ubiquitin contains seven lysine residues
and each of these can be used for ubiquitin–ubiquitin conjugation. Thus,
homo-polymeric (i.e. one distinct lysine residue of ubiquitin is used for
conjugation throughout a chain, e.g., K48 or K63) and hetero-polymeric
chains (i.e. different lysine residues of ubiquitin aremodifiedwithin one
chain and/or one ubiquitin moiety can be modified at several lysines)
can be assembled. In addition, the alpha-amino group of the N-
terminal residue of ubiquitin can be used for conjugation resulting
in so-called linear ubiquitin chains. Notably, different types of
ubiquitination signal respectively modified proteins for different fates.
For example, modification with K48-linked or K11-linked ubiquitin
chains targets proteins for proteasome-mediated degradation, while
mono-ubiquitination or modification with K63-linked ubiquitin chains
has been associated with non-proteolytic roles (for recent reviews on
the functions of different types of ubiquitination and how these are po-
tentially decoded, see [42–46]).

Consistent with their different cellular functions (Section 3), different
HECT E3s have been shown to synthesize different ubiquitin chains. For
example, E6AP mainly forms K48-linked ubiquitin chains, while mem-
bers of the Nedd4 family preferentially form K63-linked chains but can
also assembleK48-linked chains [47–50]. Thus, important yet not fully re-
solved issues are: (i) what are the mechanisms that determine which
type of ubiquitin chain is built by a givenHECT E3 andonwhich substrate,
and (ii) where are ubiquitin chains assembled, on the substrate by a se-
quential mechanism (i.e. initial mono-ubiquitination followed by the
stepwise addition of single ubiquitinmoieties) or on the catalytic cysteine
of the E3 followed by a one-step transfer of the fully assembled chain to
the substrate. While initial results obtained with KIAA10 (also termed
UBE3C or RAUL) and E6AP suggested that both mechanisms are in use
[47,51], more recent evidence indicates that ubiquitin chain assembly
mainly proceeds via a sequential mechanism [26,27,50,52] and that the
ability to build up distinct ubiquitin chains is determined by the C lobe
of the HECT domain [50]. Furthermore, studies with yeast Rsp5 and
human Smurf2, both of which belong to the Nedd4 family, indicated
that besides the covalent interaction between ubiquitin and the catalytic
cysteine, at least some HECT domains contain an additional non-covalent
interaction site for ubiquitin [52,53]. However, while for Rsp5 it was sug-
gested that the non-covalent binding of ubiquitin is required to restrict
the length of ubiquitin chains synthesized by Rsp5 [53], the Smurf2
study arrived at a rather different conclusion, namely that the binding
site is required for chain formation [52]. This apparent contradiction
was recently resolved by crystallographic studies showing that the N
lobe of Rsp5 and NEDD4, respectively harbors a non-covalent interaction
site for ubiquitin supporting a model, in which a growing ubiquitin chain
is kept in close vicinity to the catalytic cysteine for ubiquitin conjugation
[26,27].

Finally, it was shown that the yeast HECT E3 Ufd4 can team up
with Ubr1, a RING domain E3 ligase, in the poly-ubiquitination of sub-
strate proteins [54]. If the ability to interact with other E3s, thereby
modulating ubiquitin chain formation and/or widening the substrate
spectrum, is a more general feature of HECT E3s remains to be shown.
3. Physiological aspects

In the following, we will limit ourselves on a discussion of those
HECT E3s that have been associated with human disease or
disease-relevant processes.
3.1. Nedd4-like E3s

This group of HECT E3s comprises nine human members: NEDD4,
NEDD4-2/NEDD4L, ITCH, SMURF1, SMURF2, WWP1, WWP2, NEDL1 and
NEDL2. Nedd4 (Neural precursor cell-expressed developmentally
downregulated gene 4) was originally cloned as a developmentally regu-
lated gene in the mouse central nervous system [55,56]. It contains an
N-terminal C2 domain (calcium-dependent lipid binding domain), 3
(mouse and rat) or 4 (human)WWdomains (protein–protein interaction
domains), and a HECT domain at the C terminus. This modular domain
structure, containing sequential C2–WW–HECT domains, is characteristic
of all Nedd4 family members [57]. The mammalian Nedd4 family mem-
bers usually contain 2–4 WW domains, although other variants, often
due to alternate splicing are also found [5].

As indicated above (2.2), WW domains bind proteins containing
PPxY or similar motifs in substrates, adaptors and regulatory proteins
[5,58,59]. Given that there are multiple WW domains present, Nedd4
family members can potentially interact with multiple proteins.
Below we summarize the functions of individual Nedd4 family
members.

3.1.1. NEDD4
Being the first discoveredmember of the family, NEDD4 (sometimes

also called NEDD4-1) has been studied extensively. A large number of
the potential substrates of NEDD4 have been reported (for a review,
see [60]), including proteins such as Hgs, a sorting adaptor, suggesting
that this HECT E3 may have a general role in vesicular sorting and traf-
ficking [61]. However, in vivo validation is available for only a small
number of potential NEDD4 substrates.

The main phenotypes in mice deficient in Nedd4 are growth retar-
dation, developmental abnormalities in the nervous and cardiovascular
systems and defects in neuromuscular junctions and T cell function (see
below). The complex phenotypes associated with Nedd4 knockout sug-
gest that Nedd4 has multiple targets in vivo. Nedd4-deficient animals
die during fetal development between E14 and E18 and are less than
half the size of their wild-type littermates [62]. Even the mice that are
heterozygous for Nedd4 (Nedd4+/−) are 15–20% smaller [62].

The growth retardation in Nedd4 deficient animals is at least part-
ly due to reduced cell surface expression and signaling through insu-
lin and IGF-1 receptors [62]. The fibroblasts isolated from Nedd4−/−

embryos show reduced growth and mitogenic activity and increased
levels of Grb10, an inhibitor of both receptors [62]. Although not
fully elucidated, it appears that Grb10 itself is not a direct target of
Nedd4. Nevertheless, Grb10 directly interacts with Nedd4 through
the C2 domain of Nedd4 [63,64] and the lethality in Nedd4−/− mice
can be partially rescued by the maternal inheritance of a disrupted
Grb10 allele [62].

Nedd4 also regulates T cell function. Although Nedd4−/− animals
display normal T cell development in the thymus, their T cells in the
periphery are hyporesponsive, proliferate poorly in response to anti-
gen and are less likely to produce IL-2 [65]. Nedd4−/− B cells undergo
class switching with lower frequency [65]. The reduced activation of
Nedd4−/− T cells is likely to be due to the higher levels of Cbl-b, a
RING type ubiquitin ligase and a known target of Nedd4. Indeed
Nedd4−/− T cells contain increased levels of Cbl-b protein [65].

Another study using the Nedd4 knockout mice shows that Nedd4
regulates neurite growth and arborization in neurons [66,67]. Nedd4,
the serine/threonine kinase TNIK and Rap2A form a complex thatmedi-
ates the Nedd4-mediated ubiquitination of Rap2A [66]. This leads to the
reduced Rap2A function and promotion of dendrite growth. Drinjakovic
et al [67] found that the downregulation of PTEN by Nedd4-
mediated-ubiquitination controls branching of retinal ganglion axons.
Nedd4 is also required for the proper formation and functioning of the
neuromuscular junctions [68]. InNedd4−/− embryos the size of skeletal
muscle fibers and the number of motor neurons are greatly reduced, in
an apparent non-cell autonomous manner. Using a Nedd4 skeletal
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muscle-specific knockout mouse, it has been recently demonstrated
that the absence of Nedd4 results in an increased mass of the type II
fast twitch fibers of denervated gastrocnemius muscle following tibial
nerve transection, suggesting that Nedd4 mediates denervation-
induced skeletal muscle atrophy in vivo [69]. The mechanism by
which this occurs remains unknown. Additionally, Nedd4 is critical for
vascular development [70]. Increased amounts of thrombospondin-1
(Tsp-1), an inhibitor of angiogenesis, inNedd4−/−mice potentially con-
tribute to the vascular defects in the embryos.

NEDD4 also ubiquitinates and degrades N- and c-Myc oncoproteins
in neuroblastoma and pancreatic cancer cells [71]. The class III histone
deacetylase SIRT2 enhances N-Myc and c-Myc protein stability and pro-
motes cancer cell proliferation by directly binding theNEDD4 promoter,
deacetylating histone H4 lysine 16 and repressing NEDD4 gene expres-
sion. Interestingly, SIRT2 inhibitors reactivate NEDD4 gene expression,
reduce N-Myc and c-Myc protein expression, and inhibit neuroblasto-
ma and pancreatic cancer cell proliferation [71]. These results suggest
that NEDD4-mediated Myc regulation may be targeted therapeutically
for the treatment of neuroblastoma and pancreatic cancer.

Lastly, NEDD4 (and also NEDD4-2) has been shown to interact
with viral proteins to mediate budding of many viruses including
the Ebola virus [72,73] and retroviruses [74–79]. NEDD4 ubiquitinates
viral matrix proteins, including the Epstein–Barr virus LMP2A and
LMP2A-associated proteins such as Lyn. This leads to recognition by
the cellular ESCRT machinery, trafficking through the host cell vesic-
ular transport machinery and eventually budding from the infected
cells [80].

3.1.2. NEDD4-2/NEDD4L
Despite being highly homologous to NEDD4, NEDD4-2 appears to

have a more restricted and/or partially different substrate pattern and
this is apparent from the phenotype of Nedd4-2 knockout mice. Mice
null for Nedd4-2 develop normally but mostly die at birth due to col-
lapse of the lungs and an inability to breathe [81]. Some Nedd4-2−/−

animals that survive birth die within 3 weeks due to severe sterile
lung inflammation, presumably caused by drying out of alveolar epithe-
lia [81]. One of themain reasons for this phenotype appears to be the in-
creased cell surface expression of the epithelial sodium channel (ENaC),
although other factors and targets may contribute [81]. A lung specific
conditional knockout of Nedd4-2 also results in a somewhat similar
phenotype and perinatal lethality [82].

Previous electrophysiological and biochemical studies have
established NEDD4-2 as a critical regulator of ENaC [83,84]. The WW
domains in mouse Nedd4-2 bind the PY motifs present in all three
ENaC subunits [85]. This leads to ENaC ubiquitination and targeting
for endocytosis and degradation. The disruption of the interaction be-
tween Nedd4-2 and ENaC by mutations at the C termini of either the
β- or the γ-ENaC subunit is predicted to be the cause of Liddle's syn-
drome, an autosomal dominant disorder with severe sodium retention
and hypertension [86]. Consistent with this prediction, a Nedd4-2
mouse knockout line that retains some Nedd4-2 expression (“Nedd4-
2 hypomorph”) shows hypertension in animals on a normal diet that
is further enhanced on high salt diet [87]. These Nedd4-2 hypomorphs
were more hypertensive than Liddle syndrome mice, and they do not
display the degree of hypokalemia seen in these mice [87], suggesting
thatNedd4-2may also affect blood pressure by othermeans. Indeed, re-
cent data using an inducible nephron-specific deletion of the Nedd4-2
locus indicates that sodium chloride cotransporter NCC is also
upregulated and contributes to salt-sensitive hypertension inmice [88].

When coexpressed in Xenopus oocytes, Nedd4-2 is also known to
negatively regulate a number of voltage-gated sodium and potassium
channels [89–94]. Voltage-gated sodium channels (Navs) and potassi-
um channels (KCNQ) play a key role in generating and propagating
action potentials in excitable cells, such as the neurons. Most of the
Navs contain a typical PY motif within the C-terminal cytoplasmic re-
gion which binds Nedd4-2 WW domains [90]. Several of these PY
motif-containing Navs were shown to be ubiquitinated by Nedd4-2
[90]. KCNQ channels KCNQ1, KCNQ2/3 and KCNQ3/5 interact through
their carboxyl-terminal region with Nedd4-2 and are inhibited by
Nedd4-2 expressed in Xenopus oocytes [93,94]. The validation of
these findings in the Nedd4-2 deficient mice has yet to be carried
out. Another Nedd4-2 target that is of interest in this context is the
dopamine transporter DAT [95]. Nedd4-2 mediated ubiquitination is
required for DAT interaction with the adaptor proteins in clathrin-
coated pits (e.g., epsins Eps15 and Eps15R) and endocytosis [95]. It
would be interesting to test whether such regulation of DAT and the
dopamine neurotransmission is abrogated in Nedd4-2−/− mice.
Given the embryonic and neonatal lethality of Nedd4-2−/− mice, it
would be necessary to generate mice with a conditional dopaminer-
gic neuron-specific knockout of the Nedd4-2 gene.

In addition to ENaC, NCC, Navs, and KCNQs there are a number of
other proteins, including many channels and transporters, predicted
to be regulated by Nedd4-2, although most have not been validated
in in vivo models [60]. One protein, the Drosophila discs' large mem-
ber Dlg, also known as the X-linked mental retardation gene product
requires a mention here. Dlg3 is known to contribute to apical-basal
polarity and epithelial junction formation in mouse organizer tissues
and to planar cell polarity in the inner ear. A recent study demon-
strates that Dlg3 is mono-ubiquitinated by Nedd4-2 (and Nedd4)
and this is required for the apical membrane recruitment and consol-
idation of the tight junctions [96].
3.1.3. ITCH
Like other NEDD4 family members ITCH interacts with many po-

tential targets and has been implicated in the regulation of various
cellular functions. The best known function of ITCH is in the regula-
tion of the immune system. The Itchy mutant mice that carry an in-
version of the Itch locus develop severe inflammatory disease [97].
These mice have T helper 2 (TH2) cell differentiation defects with in-
creased production of IL-4, IL-5 and Ig and exhibit autoimmunity. The
deficiency of human ITCH causes syndromic multisystem autoim-
mune disease and developmental abnormalities, confirming that
ITCH plays multiple roles in cellular regulation [98]. ITCH has multiple
known targets, including JunB which regulates the transcription of
the IL4 gene. Following T cell activation JNK1-mediated phosphoryla-
tion and activation of ITCH result in ITCH-dependent ubiquitination
and degradation of JunB [99]. This regulatory mechanism is required
to negatively regulate TH2 cell activation. Consequently, TH2 cells
from Itch-deficient mice exhibit resistance to T cell anergy and hence
impaired self-tolerance [99,100]. Itch, along with the deubiquitinase
Cyld also regulates TAK1 to terminate inflammatory signaling via TNF
[101].

Another mechanism by which Itch regulates T cell function and
allergic response is via Foxp3, a key factor in regulatory T cells (Treg
cells) [102]. Foxp3 expression in naive T cells is induced by TGFβ
and requires TIEG1 transcription factor. Itch ubiquitinates TIEG1 con-
tributing to a non-proteolytic pathway to regulate Foxp3 expression
and Treg-mediated allergic responses [102].

Recent data suggest that Itch may also regulate inflammation via
regulating the ubiquitin-editing enzyme A20 which negatively regu-
lates TNF-mediated inflammation signaling [103]. In this pathway,
TAX1BP1 recruits Itch to A20 and Itch is required for TNFR signaling
by controlling the A20-mediated recruitment and inactivation of
RIP1 kinase. Interestingly, the Tax oncoprotein of T cell leukemia
virus type I caused the inactivation of this complex by disrupting
the interaction among TAX1BP1, A20 and Itch [103].

Itch regulates MAVS, a critical adaptor for RIG-I-like helicases in
innate antiviral immunity which is essential for preventing excessive
harmful immune response [104]. Viral infection induces the expres-
sion of PCBP2 which recruits Itch to ubiquitinate and degrade MAVS
[104]. Deficiency of Itch results in prolonged and enhanced antiviral
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responses suggesting that Itch acting via PCBP2 and MAVS is critical
for immune response in response to viral infection.

Itch is also implicated in Notch and Wnt signaling. The Itch−/−

mice have more and functionally enhanced hematopoietic stem
cells, which show accelerated proliferation rates and sustained pro-
genitor properties [105]. This was found to be due to the accumula-
tion of activated Notch1 [105]. Itch regulates Wnt signaling via the
regulation of PI 4-kinase type IIα (PI4KIIα) [106]. Itch ubiquitinates
PI4KIIα and both proteins colocalize on endosomes to regulate inter-
nalization and degradative sorting of the Wnt-activated frizzled 4
(Fz4) receptor [106].

Finally, Itch ubiquitinates and promotes the degradation of p63
and p73, the members of the p53 family of transcription factors
[107,108]. p63 protein levels are significantly increased in Itch-
deficient keratinocytes [108]. Other targets of Itch include the chemo-
kine receptor CXCR4, where Itch-mediated regulation controls CXCR4
endocytosis and sorting [109], and c-FLIP, an inhibitor of caspase-8 in
TNF signaling pathway [110].

3.1.4. WWP1
Like human NEDD4 and NEDD4-2, WWP1 also contains 4 WW do-

mains. In Caenorhabditis elegans WWP1 has been shown to be a pos-
itive regulator of lifespan in response to diet restriction [111].
Although such in vivo studies are not available for mammals, mam-
malian WWP1 has been implicated in the regulation of a number of
proteins including p63, ErbB4, Smad2, Smad4, KLF2, KLF5, RNF11,
SPG20, TβR1, EPS15, RUNX2, and JunB, thus potentially regulating
many cellular signaling pathways (reviewed in [112]). However,
most of these studies have not been validated in mouse knockout
studies.

WWP1 gene amplification has been found to occur in a substantial
number of breast and prostate cancers, and WWP1 knockdown in
cancer cells results in growth arrest [112]. This – combined with the
possible role of WWP1 in the degradation of p53, KLF2 and KLF5 –

suggests that WWP1 plays a role in tumor progression. On the other
hand, a recent study suggests that WWP1 knockdown in MDA231
breast cancer cells increases tumor area in the bone marrow of the
mice. Furthermore, WWP1 knockdown reduces CXCL12-induced
CXCR4 lysosomal trafficking and degradation suggesting that WWP1
regulates cell migration and breast cancer metastasis [113].

Another study shows that TNF enhances the expression of Wwp1
in mesenchymal stem cells (MSCs) isolated from mice transgenic for
TNF (a model of chronic inflammatory arthritis) [114]. WWP1 medi-
ates JunB ubiquitination and degradation in MSCs after chronic expo-
sure to TNF. Importantly, while injection of TNF into wild-type mice
resulted in decreased osteoblast differentiation of MSCs and in-
creased JunB ubiquitination, in Wwp1−/− mice no such effect was
seen. Thus, Wwp1 is important for the control of MSC differentiation
into osteoblasts in vivo.

3.1.5. WWP2
WWP2 has been implicated in the regulation of iron transport

through the divalent metal transporter DMT1 [115,116], in craniofa-
cial development through mono-ubiquitination of Goosecoid [117],
in palatogenesis by interacting with Sox9 and Med25, and in the reg-
ulation of the tumor suppressor PTEN [118].

DMT1 is the primary non-heme iron transporter in mammals that
is responsible for iron uptake in the duodenum. It is regulated by the
amount of dietary iron and gain and loss of the function of DMT1 re-
sult in human diseases of iron homeostasis (hemochromatosis and
anemia, respectively). WWP2 binds DMT1 through the PY motif
containing adaptors Ndfip1 and Ndfip2 to ubiquitinate and potential-
ly degrade DMT1 [115,119] and this regulation is critical for iron ho-
meostasis under iron-limiting conditions [116].

WWP2 has been shown to ubiquitinate and regulate the transcrip-
tion factor OCT4 [120,121]. In human embryonic stem cells WWP2
regulates the levels of OCT4 via ubiquitin-dependent proteasomal
degradation. As OCT4 is essential for maintaining the pluripotency
and self-renewal of ES cells and also in determining cell fate, WWP2
presumably plays an important role in these processes.

Recent data suggest that the deficiency of Wwp2 in mice leads to
defects in the craniofacial region [117]. This phenotype is attributed
to the role of Wwp2 in craniofacial patterning through its interactions
with the homeobox transcription factor Goosecoid (Gsc) which is
known to be involved in craniofacial development. The authors
showed that Wwp2 binds and mono-ubiquitinates Gsc, which then
activates the transcription of cartilage regulatory protein Sox6. Thus
Wwp2 function in craniofacial development does not involve
ubiquitin-dependent degradation of the substrate. Sox9, another
transcriptional activator of cartilage-specific extracellular matrix
genes, regulates Wwp2 expression [122]. Wwp2 also directly inter-
acts with Sox9 and appears to be important for the nuclear transport
and transcriptional activation of Sox9 [122]. This transcriptional acti-
vation of Sox9 also requires binding of Med25, a component of the
Mediator complex. The Wwp2–Med25–Sox9 axis defines the Sox9
transcription and chondrogenesis in the formation of the palate.

Regulation of the tumor suppressor protein PTEN, a phosphatase,
by Nedd4 family members has been controversial. While initial re-
ports suggested that Nedd4 regulates PTEN nuclear transport and reg-
ulation [123,124], PTEN levels or localization is not affected in
Nedd4-deficient cells [125]. More recently, PTEN was shown to be
ubiquitinated and translocated into the nucleus in neurons following
ischemia [126]. This translocation is dependent on the adaptor pro-
teins Ndfip1 and Nedd4 or Nedd4-2. In addition to ubiquitination by
Nedd4 and Nedd4-2, which primarily appears to regulate PTEN local-
ization, PTEN is also ubiquitinated by WWP2, and this apparently
leads to PTEN degradation [118]. In this case, WWP2 regulates
tumor cell survival and tumorigenesis.

3.1.6. SMURF1 and SMURF2
Smad ubiquitin regulatory factors SMURF1 and SMURF2 are relat-

ed Nedd4 family members, both containing 3 WW domains [5]. These
ligases are primarily involved in the regulation of signaling by the
TGFβ/BMP superfamily members, a function that is conserved in
Drosophila, which has a single Smurf homologue [5]. Other cellular
processes that Smurfs are involved in include cell proliferation, DNA
damage response, and tumor suppression (reviewed in [127]).

The TGFβ family members signal through type I and II Ser/Thr ki-
nase receptors [128,129]. Binding of TGFβ leads to type II receptor-
mediated phosphorylation of type I receptor. This is followed by
the phosphorylation of receptor-regulated Smads (R-Smads) which
then bind the co-Smad Smad4. The Smad4 complexes translocate
into the nucleus to mediate the transcription of target genes. Inhibito-
ry Smads (I-Smads) terminate TGFβ signaling by blocking R-Smads
and co-Smads [130]. Smurf ligases can regulate TGFβ signaling in
multiple ways — by directly ubiquitinating Smads, by ubiquitinating
TGFβ/BMP receptors themselves or by targeting other downstream
components of the pathways [5].

Knockout mouse studies suggest that Smurf1 and Smurf2 play a
redundant function in the regulation of TGFβ signaling. Smurf1−/−

mice develop normally but show an age dependent increase in bone
mass [131]. These mice do not show any disruption of the canonical
TGFβ or BMP signaling pathways. Rather, they show accumulation
of activated protein kinase Mekk2 and downstream activation of Jnk
signaling [131]. The authors showed that Mekk2 is a direct target of
Smurf1-mediated ubiquitination and degradation, and thus negative-
ly regulates osteoblast activity.

Smurf2−/− mice also develop normally, are viable and fertile and
do not show any overt phenotype [132]. However, Smurf1/Smurf2
double knockout mice die around embryonic day E10.5, suggesting
that these two ubiquitin ligases are functionally redundant. The
study of the double knockout animals suggested that Smurfs are
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involved in planar cell polarity and convergence and extension. As
such, the Smurf1/Smurf2 double knockout embryos show planar cell
polarity defects in the cochlea and convergence and extension de-
fects, such as a failure to close the neural tube [132]. The authors
found that Smurfs regulate a non-canonical Wnt signaling pathway
that leads to the ubiquitination and degradation of the core planar
cell polarity protein, Prickle1 [132].

In another study, Tang et al. [133] found that TGFβ-mediated tran-
scriptional responses are elevated in Smurf2-deficient mice. Surpris-
ingly, rather than inducing Smad degradation, Smurf2 was found to
multiple mono-ubiquitinate Smad3. This resulted in the inhibition
of Smad3 complex formation. Thus, these results suggest that
Smurf2 negatively regulates TGFβ signaling by inhibiting Smad3 ac-
tivity, but not by causing Smad degradation, as previously thought.

Smurf2-deficient mice are also characterized by early spontaneous
tumors, mostly B-cell lymphomas, suggesting a tumor suppressor
function for Smurf2 in vivo [134]. Interestingly, Smurf2 deficiency
leads to an impaired response to senescence in embryonic fibroblasts
and premalignant spleen cells. Increased levels of Id1 and decreased
p16 expression in Smurf2-deficient cells suggest that Smurf2 regu-
lates senescence by targeting Id1 for ubiquitination and degradation
[134]. Another study suggests a tumor suppressor function of
Smurf2 by the mono-ubiquitination of histone H2B as well as by the
trimethylation of histone H3 by targeting ring finger protein 20
(RNF20) for proteasomal degradation [135]. Thus, the tumor suppres-
sor function of Smurf2 also appears to be due to its function in the
epigenetic control of genomic stability.

SMURF1 has also been implicated in the regulation of tight junc-
tions and cell polarity by targeting small GTPase RhoA for degradation
following TGFβ activation [136]. Numerous other targets of both
Smurf1 and Smurf2 have been described and recently reviewed
[127]. Many of the Smurf substrates are involved in signaling path-
ways that participate in tumor progression or tumor suppression.
However, the multiple targets and pathways affected by Smurfs sug-
gest that these ubiquitin ligases have complex cellular functions, and
thus may be associated with many pathological scenarios.

3.1.7. NEDL1/HECW1 and NEDL2/HECW2
NEDL1 (NEDD4-like ubiquitin protein ligase-1) is implicated in

familial amyotrophic sclerosis (FALS) that arises from germ line muta-
tions in the SOD1 gene. NEDL1 binds and ubiquitinates misfolded
SOD1 protein [137]. The authors also identifiedDishevelled-1 as a target
for NEDL1 and suggested that mutant SOD1, NEDL1, Dishevelled-1 and
translocon-associated protein-delta form a complex of ubiquitinated
proteins that is part of protein aggregates. These cytotoxic protein ag-
gregates may function in neuronal cytotoxicity in FALS. In further stud-
ies the authors generated NEDL1 transgenic mice expressing human
NEDL1 [138]. These mice show motor dysfunctions, degeneration of
neurons in the lumbar spinal cord and muscle atrophy, a phenotype
showing Amyotrophic lateral sclerosis-like symptoms. These studies
suggest that NEDL1 is involved in the pathophysiology of some neuro-
degenerative diseases.

In another study, NEDL1 was shown to bind the C terminus of p53
in neuroblastoma cells [139]. This binding results in an increased
transcriptional activity of p53 and the catalytic activity-independent
enhancement of the proapoptotic activity of p53. The mechanism,
by which the enhancement of p53 function by NEDL1 is mediated, re-
mains unclear. A related study showed that NEDL1 interacts with
RNF43, a RING ubiquitin ligase highly expressed in colorectal carcino-
mas [140]. It was further found that RNF43 interacts with p53 and
suppresses the transcriptional activity of p53 in colorectal carcinoma
cells, suggesting that NEDL1 association with RNF43 and p53 attenu-
ates p53-mediated apoptosis.

Finally, ErbB4, a member of the EGF receptor family that is impor-
tant for mammary epithelial cell proliferation and survival, was found
to be a proteolytic target for NEDL1 [141].
Little is known about NEDL2 and its potential functions. In the
only published study on this E3 ligase, NEDL2 was found to bind the
C-terminal PY motifs of p73 and catalyze the ubiquitination of p73
in vitro. Interestingly, the ubiquitination of p73 by NEDL2 led to a sta-
bilization of p73, resulting in enhanced p73-dependent transcription-
al activation [142]. Thus, it seems that both NEDL1 and NEDL2 are
involved in stabilization and enhancing the transcriptional modulato-
ry functions of p53 family members.

3.2. HERC E3s

The human HERC E3 subfamily has six members that, based on
their molecular mass, can be divided into HERCs with a molecular
mass of more than 500 kDa (HERC1, HERC2) and HERCs with a mo-
lecular mass of approx. 100–120 kDa (this is a purely operational
classification that is not based on evolutional considerations) (for re-
views on HERC E3s, see [143,144]). As mentioned above (Section 1),
HERC family members are characterized by the presence of one or
more (up to three) RLDs (Fig. 1). A canonical RLD consists of seven re-
peats of 50–70 amino acids in length and was first described for RCC1
(Regulator of Chromosome Condensation 1) [145]. RCC1 adopts a
seven-bladed β-propeller structure with each repeat corresponding
to one blade [146]. In RCC1, one side of the propeller binds to the
GTP-binding protein Ran and acts as a guanine nucleotide exchange
factor. The opposite side binds to histones mediating the interaction
of RCC1 with chromatin [147,148]. If RLDs of HERC E3s also serve a
dual function, remains to be shown.

3.2.1. HERC1
HERC1 is a giant protein of 4861 amino acids and, thus, is rather

refractory to biochemical analysis. Nonetheless, it was the first mem-
ber of the HERC family to be characterized and it was shown to bind
to and act as a guanine nucleotide exchange factor for ARF1 [149].
However, as no evidence is available that ARF1 represents a
ubiquitination substrate for HERC1, the interaction with ARF1 may
not be relevant for the E3 function of HERC1 (i.e. HERC1 may be a
multifunctional protein). Furthermore, HERC1 interacts with TSC2, a
GTPase-activating protein of the Rheb GTPase, and targets it for deg-
radation [150]. In complex with TSC1, TSC2 negatively affects the
mTOR pathway and plays a role in the development of tuberous
sclerosis complex (TSC), an inherited disease characterized by
hamartoma formation in various organs. However, if the deregulation
of HERC1 expression or activity is involved in TSC development, is
presently unclear. In addition, the TSC2–TSC1 complex inhibits
FRAP1, which is a negative regulator of the protein phosphatase
PP2A. One of the substrates of PP2A is the DNA mismatch repair en-
zyme MSH2, which plays a pivotal role in maintaining genomic integ-
rity. Recently, it has been reported that a certain percentage of
patients with acute lymphoblastic leukemia and sporadic colorectal
cancer carries deletions in the HERC1 gene [151]. Loss of HERC1 re-
sults in the inappropriate activation of PP2A and, consequently, in
the destabilization/inactivation of MSH2 (loss of HERC1 presumably
results in the stabilization of TSC2, which in consequence results in
more efficient inhibition of FRAP1 resulting in PP2A activation)
[151]. Finally, mutations in the mouse Herc1 gene result in progres-
sive Purkinje cell degeneration that is associated with a decreased
mTOR activity further indicating the physiological relevance of the
HERC1–TSC2 interaction [152].

3.2.2. HERC2
HERC2 is also a rather large protein of 4836 amino acids indicating

that similar to HERC1, HERC2 is a multifunctional protein. In the late
1990s, it was shown that the so-called rjs (runty, jerky, sterile) or jdf2
(juvenile development and fertility-2) mice harbor mutations in the
Herc2 gene [153,154]. Such mice have neuromuscular and spermato-
genic abnormalities and are characterized by defects in growth,
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movement coordination (jerky gait), and fertility. One of the mutant
mouse strains expresses a truncated form of Herc2 lacking part of
the C-terminal HECT domain [154] indicating that loss of the E3 activ-
ity contributes to the observed phenotype. However, the processes
and proteins that are deregulated in the absence of Herc2 activity re-
main to be determined.

Recently, cell culture studies have implicated HERC2 in the regula-
tion of DNA metabolism [155–157]. In conjunction with the RING do-
main E3s RNF8 and RNF168, HERC2 has been reported to coordinate
the ubiquitin-dependent assembly of DNA repair complexes in re-
sponse to ionizing irradiation-induced DNA damage [155]. In addi-
tion, the interaction with RNF8 appears to be regulated by the DNA
damage-induced sumoylation of HERC2 [158]. In contrast to these
data, evidence obtained in a chicken cell system indicates that
HERC2 is not required for RNF8/RNF168-mediated ubiquitination in
response to DNA damage [159]. Furthermore, HERC2 was reported
to regulate the stability of the DNA excision repair protein XPA and
of the RING domain E3 BRCA1, which also plays a role in DNA repair
[156,157]. Finally, in the presence of BRCA1, HERC2 was found to in-
teract with Claspin, further supporting a role of HERC2 in DNA repair
and DNA replication [160]. It should be noted, however, that rjs/jdf2
mice do not display overt DNA repair phenotypes [153,154]. Thus,
further studies will be required to fully elucidate the role of HERC2
in DNA metabolism.

The human HERC2 gene is located on chromosome 15q11-13,
which is known as the Prader–Willi/Angelman region (see also
3.3.1) [161,162]. This region (~4 megabases in size) contains a bipar-
tite imprinting center, and consequently maternally and paternally
imprinted genes, and is bounded by duplicons of the HERC2 gene
predisposing the region to chromosomal rearrangements. The
Prader–Willi syndrome (PWS) and the Angelman syndrome (AS) rep-
resent two clinically distinct neurodevelopmental disorders with
PWS resulting from paternal genetic deficiency and AS from maternal
genetic deficiency [161,162]. Although the HERC2 gene is frequently
affected in these diseases, it has been assumed that the loss or alter-
ation of HERC2 function does not contribute to the development of
PWS and AS, since the HERC2 gene itself is not imprinted. However,
two recent reports provided unequivocal evidence that a homozy-
gous missense mutation in the HERC2 gene is found in patients with
a neurodevelopmental disorder that can be described phenotypically
as a mild form of AS [163,164]. Furthermore, HERC2 has been shown
to have the ability to interact with E6AP and to act as an allosteric ac-
tivator of the E3 activity of E6AP [165]. Thus, although loss of HERC2,
which is frequently observed in AS patients, is not a primary cause for
AS development, it seems likely that it contributes to the severity of
some features of this disorder (e.g., autistic behavior, seizures, ataxic
features) [166,167].

Finally, SNPs (Single Nucleotide Polymorphisms) in the HERC2
gene have been associated with the determination of eye color
[168,169]. However, as the SNPs are located in the intronic regions
of the HERC2 gene, the HERC2 protein is most likely not affected
and, thus, not involved in this process.

3.2.3. HERC5
With the exception of HERC5, only little is known about the phys-

iological functions of HERC3-6 [170,171]. In 1999, HERC5 was
reported to interact with different Cyclins [172]; the physiological rel-
evance of these interactions, however, remains unclear. Since then, it
was shown that HERC5 gene expression is upregulated in response to
pro-inflammatory stimuli and that HERC5 acts as an E3 ligase for
ISG15, a ubiquitin-like protein that is expressed upon the stimulation
of cells with interferon [173–176] (note that in mice, the main ISG15
E3 ligase is Herc6 [177,178]). Indeed, the available evidence indicates
that HERC5 plays an important role in the antiviral response
[179–181]. Intriguingly, newly synthesized proteins appear to be
the main target for the covalent attachment of ISG15 [181]. As
HERC5 is associated with polyribosomes [181], this indicates that
the “substrate specificity” of HERC5 is determined by its subcellular
localization rather than by the recognition of defined amino acid se-
quences or regions/domains, and with respect to virus-infected cells
that viral proteins are eliminated before they reach a functional state.
3.3. “Other” HECT E3s

3.3.1. E6AP
E6AP is the founding member of the HECT family of E3s [11,16]

and represents an impressive example for the notion that the dereg-
ulation of components of the ubiquitin-conjugation system contrib-
utes to the development of human disease. In fact, E6AP, which is
encoded by the UBE3A gene on chromosome 15q11-13, has been as-
sociated with three distinct disorders: cervical cancer, AS, and autism
spectrum disorders (ASD) [182–186].

E6AP was originally isolated as an interacting protein of the E6 pro-
tein of the so-called high-risk human papillomaviruses (HPV) that have
been etiologically associated with cervical cancer [182,187]. The inter-
action of E6AP with E6 has been fairly well characterized, and based
on various lines of evidence including mouse models, it is commonly
assumed that the ability of E6 to interact with E6AP is of critical rele-
vance for HPV-induced carcinogenesis [182,188]. As there are several
reviews on the E6-E6AP connection (e.g., [182,189,190]), we will not
further discuss the role of E6AP in cervical carcinogenesis, except for
noting that in complexwith E6, E6AP targets proteins for ubiquitination
and degradation (e.g., the tumor suppressor p53 [191]) that are normal-
ly not recognized by E6AP, thereby contributing to HPV-induced cervi-
cal carcinogenesis.

In contrast to cervical cancer, where the unscheduled activation of
E6AP contributes to disease development, development of AS is the re-
sult of the inactivation of E6AP [166,167,183,184,192,193]. Asmentioned
above (Section 3.2.2), AS is a genetic neurodevelopmental disorder with
an incidence of 1 in 10,000 to 1 in 20,000 andwas first described in 1965
[166,167]. AS is characterized by various features includingmental retar-
dation, movement or balance disorders, characteristic abnormal behav-
iors, severe limitations in speech, and, in some cases, epileptic seizures
[166,167]. Intriguingly, studies in mice revealed that the Ube3a gene
encoding E6AP is biallelically expressed in most somatic cells, while the
paternalUbe3a allele is silenced in cerebellar Purkinje cells, hippocampal
neurons, and mitral cells of the olfactory bulb [194]. Indeed, all of the
genetic abnormalities associated with AS development affect the mater-
nal allele, including deletion of the 15q11-13 region of the maternal
chromosome, uniparental paternal disomy, and single point mutations
in the maternal UBE3A gene, and result in the loss of E6AP expression
or expression of mutated forms with a reduced E3 ligase activity
[166,167,195]. Since this indicates that constitutive or transient increases
in the expression level of substrate proteins of E6AP are critically in-
volved in AS development, identification and characterization of E6AP
substrates do not only provide insight into the processes and pathways
underlying AS butmay also reveal potential targets for therapeutic strat-
egies. Several potential substrates of E6AP were reported, including
HHR23A and HHR23B, AIB1, PML, α-Synuclein, Ring1b, and ARC
[196–201]. However, with the exception of ARC [201], the relevance of
these interactions for AS development remains unclear.

Experiments with Ube3A knockout mice, which display AS-like
phenotypes, indicate that E6AP is critically involved in the control of
synaptic function/plasticity, since for example, such mice have de-
fects in long-term potentiation and impaired experience-dependent
maturation of the neocortex [202–204]. ARC, on the other hand, is
commonly accepted as an important player in synaptic plasticity, in
part by facilitating endocytosis of AMPA receptors [205,206]. Thus,
the notion that stability, and thus levels, of ARC are regulated by
E6AP provides a reasonable explanation for some of the AS features
(in the absence of E6AP, ARC levels accumulate resulting in the
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increased endocytosis of AMPA receptors and thus impaired synaptic
function).

Finally, deregulation of E6AP activity has been associated with
ASD [185,186], and experiments with transgenic mice indicate that
the amplification of the Ube3A gene resulting in increased E6AP levels
contributes to ASD [207]. Thus, decreases (AS) and increases (cervical
cancer, ASD) in E6AP activity contribute to the manifestation of se-
vere pathologic conditions, indicating that at least in certain tissues,
E6AP activity needs to be tightly regulated. However, with the poten-
tial exception of HERC2 (see 3.2.2), it is currently unknown how E6AP
activity is contained. In this context, it should be noted that the trans-
genic mice carrying additional Ube3A alleles were engineered such
that E6AP expressed from these alleles harbors an additional C-
terminal 3×FLAG tag (E6AP-FLAG) [207]. However, fusing a C-
terminal extension (e.g., FLAG tag) to E6AP or the yeast HECT E3
Rsp5 was previously shown to result in ubiquitination-defective
proteins [208]. Thus, rather than increasing levels of active E6AP, ex-
pression of E6AP-FLAG may interfere with the E3 function of endoge-
nous E6AP by acting as a dominant-negative variant (in consequence,
the ASD phenotype observed in the respective mice would be the
result of loss of E6AP function rather than of gain of function). An al-
ternative but not mutually exclusive possibility is that the ASD phe-
notype is not related to the E3 function of E6AP. E6AP was reported
to affect nuclear hormone receptor-mediated transcription, and at
least under certain conditions this property of E6AP is independent
of its E3 activity [209,210]. Thus, it is conceivable that some of the
neuronal functions of E6AP are mediated via nuclear hormone recep-
tors in a ubiquitin-independent manner, while others require the E3
activity of E6AP.
3.3.2. HUWE1/UREB1/HECTH9/ARF-BP1/MULE/E3Histone/LASU1
HUWE1 (also termed UREB1, HECTH9, ARF-BP1, MULE, E3Histone,

LASU1) is a giant protein consisting of 4374 amino acid residues and
besides the HECT domain, contains aWWE domain and a BH3 domain
(Fig. 1) [20,211–214]. A number of potential substrates for HUWE1
have been identified including p53 [212], histones [214], the anti-
apoptotic protein Mcl-1 [213], the proto-oncoproteins c-Myc and
N-Myc [215,216], the DNA replication regulatory protein Cdc6 [217],
the DNA damage and replication checkpoint protein TopBP1 [218],
the Myc-associated protein Miz1 [219], the circadian heme receptor
Rev-erb alpha [220], the histone deacetylase HDAC2 [221], the DNA
polymerases β and λ [222,223], and Mitofusin 2, an essential compo-
nent of the mitochondrial outer membrane fusion apparatus [224].
Accordingly, HUWE1 has been implicated in a number of (patho-)
physiological processes including cell proliferation and apoptosis,
DNA repair, tissue homeostasis, and neuronal differentiation.

HUWE1 is overexpressed in various cancers suggesting that it pro-
motes cancerogenesis and that it may be a promising target for
anti-cancer therapies [215,225,226]. This notion is supported by the
findings that HUWE1 targets the negative growth-regulatory proteins
p53 and Miz1 for degradation [212,219] and that HUWE1 activates
c-Myc by modifying c-Myc with K63-linked ubiquitin chains (which
serve non-proteolytic roles) [215]. Furthermore, HUWE1 is negatively
regulated by the human tumor suppressor p14ARF [212], which may
play an important role in DNA damage repair [227], supporting the no-
tion that HUWE1 acts as a proto-oncoprotein. On the other hand,
HUWE1 appears to have pro-apoptotic properties: (i) it targets the
anti-apoptotic protein Mcl-1 for degradation [213], (ii) upon cellular
stress, Mitofusin 2 – an essential component of the mitochondrial
outer membrane fusion apparatus – becomes a substrate for HUWE1
resulting in mitochondrial fragmentation and apoptosis [224], (iii)
DNA damage-induced apoptosis is severely compromised in fibroblasts
derived from Huwe1 null mouse embryos [221], and (iv) human
high-grade gliomas carry hemizygous deletions of the HUWE1 gene in
association with the amplification of the N-MYC locus [228].
Taken together, the data indicate that HUWE1 has both pro-
proliferative and anti-proliferative properties and the eventual effect
of HUWE1 activation or inactivation may depend on the respective
tissue and/or additional events that affect HUWE1 function. Along
these lines, while the actual importance of HUWE1 for p53 stability
regulation in most tissues remains enigmatic (it is commonly as-
sumed that the RING domain protein Mdm2 represents the main E3
ligase for p53 [229]), data obtained with tissue-specific Huwe1
knockout mice showed that Huwe1 is critical for maintaining homeo-
stasis of B lymphocytes and beta cells of the pancreas and that these
roles require its ability to control p53 levels [230,231].

3.3.3. EDD/UBR5
Human EDD (E3 identified by Differential Display), also termed

UBR5, is the ortholog of the Drosophila hyperplastic discs tumor sup-
pressor gene product HYD [232]. It consists of 2799 amino acid resi-
dues and contains an N-terminal UBA domain (UBA domains bind
to ubiquitin), a central UBR1-like zinc finger motif, and a PABC do-
main (a peptide binding domain found in poly (A)-binding proteins
PABP) (Fig. 1) [233,234]. EDD is frequently overexpressed in breast
and ovarian cancers [235,236]; however, whether EDD is etiologically
associated with human disease, remains to be determined.

A number of potential EDD substrates and interacting proteins have
been reported. Substrates include the DNA damage and replication
checkpoint protein TopBP1 [237], Paip2 (which interferes with transla-
tion by displacing PABP from mRNA) [238], the proto-oncoprotein
beta-catenin [239], the microtubule-severing enzyme phospho-
katanin p60 [240], CDK9 (a subunit of the transcription elongation fac-
tor b) [241], the gluconeogenesis enzyme PEPCK1 [242], and the RING
ubiquitin ligase RNF168 [243]; interaction partners include the tumor
suppressor protein APC [244], the DNA damage checkpoint kinase
CHK2 [245], the progesterone receptor [246], E6AP [247], and the HPV
E6 oncoprotein [247]. Accordingly, EDD has been implicated in the reg-
ulation of various fundamental cellular processes including transcrip-
tion and translation, DNA damage response, gluconeogenesis, and
cellular transformation. Finally, EDD has been reported to regulate
miRNA-mediated gene silencing but apparently in an E3-independent
manner [248], further supporting the notion that at least some HECT
E3s are multifunctional proteins.

3.3.4. TRIP12/ULF
ULF or TRIP12, a protein of 1992 amino acids, was originally iden-

tified as a protein that targets the tumor suppressor p14ARF, a key
regulator of p53, for ubiquitination and degradation [249]. According-
ly, knockdown of ULF expression by RNA interference results in the
p14ARF-mediated activation of p53 in normal human cells as well
as in acute myeloid leukemia cells derived from patients carrying mu-
tations in Nucleophosmin that ablate its ability to shield p14ARF from
degradation [249,250]. The latter observation suggests that ULF may
be a potential target in the treatment of AML patients. More recently,
experiments with Tradd-deficient mice revealed that independent of
TNFR1 signaling (Tradd is a central adapter in the TNFR1 signaling
complex), such mice are more prone to chemical-induced carcino-
genesis than wild-type littermates [251]. Intriguingly, Tradd was
shown to modulate the interaction of ULF with p19Arf (the mouse
ortholog of human p14ARF) resulting in enhanced p19Arf stability
and supporting the notion that ULF is a critical regulator of p14ARF
activity. Finally, like EDD, ULF has been reported to regulate the
RNF168-mediated ubiquitination of histones upon DNA damage
[243].

3.3.5. HACE1
The HACE1 gene is located on chromosome 6q21 and genetic anal-

yses indicate that HACE1 has tumor suppressor function insofar as its
expression is downregulated in different tumors including Wilms' tu-
mors and neuroblastoma [252–255]. Besides the findings that HACE1
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targets Rac1, which is a critical regulator of cell motility and a target
of numerous bacterial virulence factors, for ubiquitination [256,257]
and that HACE1 is involved in Golgi biogenesis [258], nothing is
known about HACE1 substrates and the cellular processes/pathways
that are modulated by HACE1.

4. Conclusion

Since the discovery that HECT domain-containing proteins have E3
activity in 1995 [11,16], members of the HECT family have been found
to be involved in the regulation of various physiological and pathophys-
iological processes. However, despite all progress in the identification of
the potential substrate proteins of individual HECT E3s, the physiologi-
cal relevance of many of these potential interactions remains unclear.
This shortcoming may be explained by the notions that a given protein
is not only recognized as a substrate by a single E3 but by several E3s
(i.e. at least some E3s have an overlapping substrate spectrum) and
that the E3-mediated ubiquitination of a given protein may be relevant
for one tissue, but not for another, or only during certain phases of dif-
ferentiation and/or development. Thus, to determine whether a given
protein represents a substrate for a given HECT E3 or not, biochemical
experiments (i.e. binding and ubiquitination experiments) need to be
combined with cell culture experiments and with the generation and
analysis of conditional, tissue-specific HECT knockout/knockin mice.
Finally, one should keep in mind that as discussed above, at least
some HECT E3s may be multifunctional proteins (i.e. having E3-
dependent and E3-independent functions) and, thus, an important
issue when studying HECT ligases is to determine whether the catalytic
function of a HECT protein is indeed involved/required in the process
studied.
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